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Abstract

Automated segmentation of the vascolature in retinal images is important in the de-
tection of a number of eye diseases. Some diseases, e.g retinopathy of prematurity,
affect the morphology of the vessel tree itself. In other cases, e.g. pathologies like
microaneurysms, the performance of automatic detection methods may be improved
if regions containing vascolature can be excluded from the analysis. Another impor-
tant application of automatic retinal vessel segmentation is in the registration of retinal
images of the same patient taken at different times. Therefore the automatic vessel seg-
mentation forms an essential component of any automated eye-disease screening system.

In this thesis an algorithm for the segmentation of the vessels in the images of the
fundus of the human retina is developed. In the first chapter we introduce some nota-
tions about the eye, the imaging technology and the archives of images. In the second
chapter we show the state of art of the techniques proposed in the literature about vessel
extraction. Since retinal vessels have a range of different sizes, it is a natural choice the
use of an algorithm based on the multiscale analysis, so in the third chapter we deal in
detail with the multiscale paradigm, and we discuss a mathematical framework to face
this kind of problems using a differential and variational approach. In the fourth chapter
we talk about the algorithm developed to achieve the segmentation of the retinal ves-
sels. The algorithm is modular and is made up of two fundamental blocks. The former
is devoted to vessel enhancement, using a linear multiscale analysis for ridge detection,
the latter provides a binary image by resorting to both a thresholding procedure and
cleaning operations. The optimal values of two algorithm parameters are found out by
maximizing proper measures of performances able to evaluate from a quantitative point
of view the results provided by the proposed algorithm. The choice of the measure of
performance allows one to tailor the solution to the specific image features to be empha-
sized. Some simulation results are presented and the performances of the algorithm are
compared with those of other methods proposed in the literature. In the fifth chapter
we show the result improvements obtained using a nonlinear multiscale analysis (Total
Variation Motion) instead of a linear technique.
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Chapter 1

Introduction

Automated segmentation of the vascolature in retinal images is important in the detec-
tion of a number of eye diseases. Some diseases, e.g retinopathy of prematurity, affect
the morphology of the vessel tree itself. In other cases, e.g. pathologies like microa-
neurysms, the performance of automatic detection methods may be improved if regions
containing vascolature can be excluded from the analysis. Another important applica-
tion of automatic retinal vessel segmentation is the registration of retinal images of the
same patient taken at different times. The registered images are useful for automatically
monitoring the progression of certain diseases. Finally, the position, size and shape of
the vascolature provides information which can be used to locate the optic disk and the
fovea. Therefore the automatic vessel segmentation constitutes an essential component
of any automated eye-disease screening system.

1.1 Anatomy of the eye

In Figure 1.1 we can see a transverse section of the left human eyeball: all the structures
of main interest are labelled.

The outer layer of the eyeball is called fibrous tunic and it is composed of the sclera
and cornea: the former provides shape and protects inner parts, the latter admits and
refracts light. The middle coat of the eye is named vascular tunic and comprises: the
choroid, which provides blood supply and absorbs scattered light; the ciliar body, which
secrets aqueous humor and alters the shape of lens for near or far vision; the iris, which
regulates the amount of light that enters the eyeball.

The inner layer is called nervous tunic or retina: light enters the pupil (the
aperture in the iris), is focused and inverted by the cornea and lens, and is projected
onto the retina. The retina is a soft, transparent layer of nervous tissue made up of
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Figure 1.1: A tranverse section of the left eyeball (superior view)

millions of light receptors.

The retina is connected to the brain by the optic nerve. All of the structures needed
to focus light onto the retina and to nourish it are housed in the eye, which can be
considered, from this point of view, a supporting shell for the retina.

Two separate vascular systems are involved in the nutrition of the eye. The first is
made up of the wweal, or ciliary, blood vessels and supply the oxygen to the iris, the
ciliary body and the choroid. It serves also in part the nervous tunic, that owns a
further an autonomous vascular system, whose vessels are called retinal vessels.

The retinal vessels are distributed within the inner two thirds of the retina, whereas
the outer layers, including the photoreceptors, are avascular and nourished from the
choroid. An avascular zone, which enables light to reach the central photoreceptors
without encountering a single blood vessel, is seen centrally in the fovea. Arteries and
veins are located within the nerve fiber layer. The capillaries are arranged in a lami-
nated fashion with two layers of flat capillary networks in a large part of the retina.



1.2 Imaging Techniques

The retinal capillaries have a diameter of 5 - 6 pum |1|. Retinal arterial diameters
range between 40 - 160 pm [2], 160 pwm presumably refers to the central artery. The
diameters of the superior temporal and inferior temporal branches measures approxi-
mately 120 pm [3].

1.2 Imaging Techniques

Traditionally, the retina has been observed directly via either an ophthalmoscope or
similar optical devices such as the fundus camera. Fundus photography (also known
as “retinal photography”) refers to a non-invasive technique for the documentation of
the posterior pole of the eye (retina and choroid) utilizing a color film and a specialized
instrument called “fundus camera”. Fundus photography was first described by Jackman
and Webster in 1886, and modern fundus photography began with the introduction of
commercially available fundus cameras in 1926. In Figure 1.2 we have an example of
fundus image where the main structures of the retina are pointed out.

Human retina

Figure 1.2: An example of fundus image

The term “red-free” refers to fundus photographs taken either using (a priori) a
green filter (540 - 570 nm) over the light source or extracting (a posteriori) from the
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original color images the green channel, which gives the highest contrast between ves-
sels and background [4]. After the acquisition, the images are digitized, thus becoming
available for computer processing.

Other imaging techniques are commonly used in medicine. In 1961 fluorescein
angiography, or fluorescent angiography, was developed by Novotny and Alvis [5]. In
this case, sodium fluorescein is injected into a vein, and under filtered light the sodium
fluorescein within the blood fluoresces, glowing brightly and providing easily observed
patterns of blood flow within the eye. This allows the arteries, capillaries and veins
to be easily identified and photographed, and from this, large amounts of information
concerning the health of the circulatory system can be determined. Once the dye is
administered the speed with which passages fill with marked blood, the rate at which
this marked blood spreads through the eye and the time taken for the dyed blood to
pass out of the eye are observed. These observations provide valuable data about the
effectiveness and degree of degeneration of the circulatory system of the eye, which has
been shown to be indicative of the circulatory system of the entire body.

During the 1990’s the indocyanine green dye angiography technique was devel-
oped; similarly to the flourescein angiography, a dye is injected into the blood, however
the indocyanine green dye glows in the infra-red section of the spectrum. The indocya-
nine green dye approach only came into widespread use when digital cameras sensitive
into the infra-red became commonly available, and it complements fluorescein angiog-
raphy by highlighting different aspects of the vascolature of the eye. In particular it
enhances the structure of the choroid, which is the layer of blood vessels beneath the
retina. These two techniques can be used together to gain a more thorough under-
standing of the structure and pathologies affecting an eye. They can illustrate patterns
of blood flow, haemorraging and obstructions within the vascular system, but, like the
ophthalmoscope, both require trained medical staff to perform the procedure, and a
clinical environment where the images can be taken and analysed.

In addition to these methods for observing the vascolature of the eye, there is a
variety of other, more advanced, methods for mapping structures and changes within
the eye, including ultrasound and laser tomography and laser-based blood flowmeters in
development and in use. All of these can be used to scan the eye and make observations
and diagnoses on the eye and circulatory system.

1.3 Archives of retinal images

Several archives of digital fundus images are of public domain. They all refer to projects
devoted to develope systems for the automatic diagnosis of the human eye diseases.



1.4 Mathematical definition of image

One of these archives is the DRIVE (Digital Retinal Images for Vessel Extraction)
database |6], that consists of a total of 40 color fundus photographs. All images have
been deidentified, they were stripped from all individually identifiable information and
processed in such a way that this information cannot be reconstructed from the images.
The photographs were obtained from a diabetic retinopathy screening program in The
Netherlands. The screening population consisted of 453 subjects between 31 to 86 years
of age. Each image has been JPEG compressed, which is common practice in screening
programs. Among the 40 images in the database, 7 contain pathologies, namely exu-
dates, hemorrhages and pigment epithelium changes.

The images were acquired using a Canon CR5 non-mydriatic 3CCD camera with a
45 degree field of view (FOV). Each image is captured using 8 bits per color plane at
768 x 584 pixels. The FOV of each image is circular with a diameter of approximately
540 pixels.

The set of 40 images was subdivided into a test and a training set both containing
20 images. Five independent human observers manually segmented a number of im-
ages. All observers were trained by an experienced ophthalmologist. The first observer
segmented 14 images of the training set while the second observer segmented the other
6 images. The test set was segmented twice resulting in a set X and Y. Set X was
segmented by both the first and second observer (13 and 7 images respectively) while
set Y was completely segmented by the third observer. The performance of the vessel
segmentation algorithms is measured on the test set. In set X the observers marked
577,649 pixels as vessel and 3,960,494 as background (12.7% vessel). In set Y 556,532
pixels are marked as vessel and 3,981,611 as background (12.3% vessel).

1.4 Mathematical definition of images

We deal with digital image analysis, so we have to properly define the notion of image.
Nowadays, images on computers are stored using discrete representation of the data but
one generally assumes that the discretization is thin enough (in the spatial directions)
to be able to approximate these discrete signals by continuous (or at least piecewise
continuous) mathematical functions. This is debatable and we refer the reader to |7, §|
for interesting discussions about this subject. Nevertheless, the possibility to apply
classical mathematical tools as well as the good results obtained with continuous mod-
els lead us to choose this approach.

Analitically, a generic n-dimensional image can be defined as an adimensional con-
tinuous function
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I(x):x€eQCR"— R™ (1.1)

where (2 is the image domain.

Common values are n = 2 (2D or bidimensional images) and n = 3 (3D images).
In the following of this thesis we will refer only to the bidimensional case without loss of
generality: as a matter of fact, the results that we will obtain can be straightforwardly
extended to higher dimensional cases. If m = 1 we deal with monocromatic images.
For color images, we have m = 3. A commonly used space is RGB (Red, Green, Blue)
color space, but many other color spaces are widely used: for example HSV (Hue, Satu-
ration, Lightness) or YUV spaces (a model that defines the color space in terms of one
brightness and two chrominance components).

We assume (working hypothesis) that € is a square domain; for n = 2 we have:

Qel0,1] % [0,1] (1.2)

For monocromatic images, I(x) can be physically thought of as a function that asso-
ciates a brightness level to any point P = (x,y) € Q. This value is named gray level:
high values represent bright regions of the image, low values correspond to dark regions.

Mathematically, we can think of I(x,y) as a surface in the R3 space (z,y,1), as
illustrated in Figure 1.3

(a) (b)
Figure 1.3: (a) the image I(z,y) (b) I(x,y) as surface in a 3D space.
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We assume, moreover, that

I € 0,255 (1.3)

This choice allows us, after a quantization process, to represent the gray levels of a con-
tinuous image with a 8-bit encoding inside a computer. Considering a generic I € [a, b],
we can get back the conventional range through the following relationship:

i-a

I
b—a

255 (1.4)

A computer can process only a numerical representation of an image, defined as a
matrix M7 of dimension M x N. Each element of the matrix M; is representative of
the constant level of brightness of one subregion of the image (the pixel). Supposing to
use an 8-bit encoding, 256 possible values (from 0 to 255) are associated to every pixel.
We can pass from I(x) to My, through an intermediate step, the discrete representation
D;. We divide the domain in many identical square dowels €2; ; (in analogy with the
regular disposition of the pixels in the image). A value of constant brightness, obtained
by sampling I(z,y) in the center of the dowel is associated with every subdomain €2; ;
is associated. What we have at this point is a matrix Ip; of real values, belonging
to the interval [0,255|. This is the discrete representation of an image. This is the
representation used in analog circuits for image processing, such as the so-called cellular
Neural Networks (CNNs) [9].

By quantizating the set of brightness values, instead, we obtain the matrix My of
natural values, belonging to the set {0,255}, that constitutes the numerical repre-
sentation of an image. This is the representation we have to use if we want to process
images using a digital architecture.

1.5 Image derivatives

The derivative of an image I with respect to the variable a is written as follows

I

Iy = =
Oa

(1.5)

The derivatives of a scalar image I with respect to its spatial coordinates (z,y) form
the image gradient and is denoted by VI

VI = (I, I,)" (1.6)



10

1. Introduction

By varying (z,y) the image gradient describes a vector-valued field VI : Q — R? rep-
resenting the maximum variation directions and magnitudes of the scalar image I. The

gradient norm ||VI|| = |/IZ 4 I2 is often used in image analysis, since it gives a scalar

and pointwise measure of the image variations, as shown in Figure 1.4.

(a) (b)
Figure 1.4: (a) The image I(x,y) (b) Its gradient norm [|VI(z,y)||.

For directional derivatives in a direction u = (u,v)T € R?, we use the following
notations:
ol
I, = ™ = VIu=ul, + vl (1.7)
In the same way, the second derivative of a scalar image I with respect to a and b is
denoted by

02T

Tab = 550

(1.8)

We define the Hessian of I as the matrix H of the second derivatives with respect to
the spatial coordinates:

| Laa(myy) Lay(2,y)
= Lyu(z,y)  Iyy(z,y) (19)

The matrix H will be largely used throughout this thesis. We assume that our images
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are regular enough, so that I, = I,,. Then, H is a symmetric matrix. As for sec-
ond directional-derivatives in a direction u = (u,v)T € R2, the following notations are
equivalent:

0?1
L, = Ervie V(VIu)u = u’ Hu = trace(Huu?)
u
= Wl + 2uvlyy + vzlyy (1.10)

A commonly used operator involving the second order derivatives is the Laplacian op-
erator A, defined as follow:

Al =trace(H) = Iy + Iy (1.11)

1.6 Objectives

In this thesis we use archives of images to train an algorithm for the vessel segmentation
of retinal fundus images.

In this chapter, we introduced some notations about the eye, the imaging technology
and the archives of images.

In the second chapter we show the state of the art of the techniques proposed in the
scientific literature concerning vessel extraction.

Since retinal vessels have a range of different sizes, it is a natural choice the use of an
algorithm based on the multiscale analysis, so in the third chapter we deal in detail
with the multiscale paradigm, and we discuss a mathematical framework to face this
matters using a differential and variational approach.

In the fourth chapter we talk about the algorithm developed to achieve the segmentation
of retinal vessels. The algorithm is modular and is made up of two fundamental blocks.
The former is devoted to vessel enhancement, using a linear multiscale analysis for ridge
detection, while the latter provides a binary image by resorting to both a thresholding
procedure and cleaning operations. The optimal values of two algorithmn parameters
are found out by maximizing proper measures of performances able to evaluate from a
quantitative point of view the results provided by the proposed algorithm. The choice
of the measure of performance allows one to tailor the solution to the specific image
features to be emphasized. Some simulation results are presented and the performances
of the algorithm are compared with those of other methods proposed in the literature.
In the fifth chapter we show the improvements of the results that obtain by using a
nonlinear multiscale analysis (Total Variation Motion) instead of the linear one used in
the previous chapter.
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Chapter 2

Vessel segmentation

The purpose of image segmentation is to partition an image into meaningful regions
with respect to a particular application. Image segmentation has been, and still is, a
relevant research area and hundreds of segmentation algorithms have been proposed in
the last 30 years. Many segmentation methods are based on two basic properties of
the pixels in relation to their local neighbourhood: discontinuity and similarity. Meth-
ods based on pixel discontinuity are called boundary-based methods, whereas methods
based on pixel similarity are called region-based methods. However, it is well known
that such segmentation techniques - based on boundary or region information alone -
often fail to produce accurate segmentation results [10]. Hence, in the last few years,
there has been a tendency towards algorithms which take advantage of the complemen-
tary nature of such information.

Reviewing the different works on region-based segmentation which have been pro-
posed [11, 12|, it is interesting to note the evolution of region-based segmentation meth-
ods, which were initially focused on grey-level images, and which gradually incorporated
colour, and more recently, texture. As a matter of fact we can think to extract from
the image a map of the feature of interest and apply the segmentation task to this and
not to the original greyscale image.

This is a natural choice if we want to segment parts of image that share a particular ge-
ometrical pattern, like the vessels in fundus retina, which can be identified considering
their tabular structure, thinking a bidimensional image as a 3D surface.

2.1 State of the art in vessel extraction techniques

Blood vessel delineation on medical images forms an essential step in solving several
practical applications such as diagnosis of the vessels [13, 14, 15]. It can be useful also
as a preliminary step for registration of images of the same patient obtained at different
times.

13
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The segmentation task aims to isolate the structure of interest of the fundus image
highlighting them versus other regions of the image that are considered not important
(e.g. vessels versus optic disk); moreover, the processing of this kind of images can
be divided in two steps: the first one is the segmentation itself, the second one is the
extraction of parameters of interest from the segmented image (e.g. vessel diameter,
number of occlusions or haemorrhagies, etc.).

The segmentation is then useful to pre-process in the best way the fundus image, try-
ing to eliminate elements unnecessary in the further analyses and to highlight what is
important in the specific context of the application.

The vessel segmentation can be obtained by resorting to different methods (see
[14, 16] for an overview), either rule-based or supervised. In the latter case, the rule
for the vessel extraction is “learned” by the algorithm on the basis of a training set
of reference manually-processed images. Various algorithms with a partial supervision
strategy have been recently proposed [17, 18, 19].

We don’t enforce any taxonomy at the beginning of this chapter. Instead, we put
into the same group papers that use similar approaches. During the categorization
that follows in the next pages, we try to be as specific as possible. In the following, a
summary of vessel extraction techniques and algorithms is proposed:

1. Pattern recognition techniques;

(a) Matching filters approaches
(b) Ridge-based approaches

c) Region growing approaches

(
(d) Multi-scale approaches

e) Skeleton-based approaches

)
)
)
)
)
f)

(
(f) Mathematical morphology schemes

2. Deformable models

(a) Active contours (Snakes)

(b) Level set methods
3. Tracking-based approaches
4. Artificial-intelligence-based approaches
5. Neural-network-based approaches

6. Wavelets
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2.2 Pattern recognition techniques

Pattern recognition (PR) techniques deal with the detection or classification of objects
or features. Humans are very well adapted to carry out PR tasks. Some of the PR
techniques are the adaptation of human PR ability to the computer systems. In the
vessel extraction domain, PR techniques are concerned with the automatical detection
of vessel structures and features.

2.2.1 DMatching filters approaches

Matching filters approach convolves the image with multiple matched filters for the
extraction of objects of interest. In extracting vessel contours, designing different filters
to detect the vessels with different orientations and sizes plays a crucial role [20]. The
convolution kernel size affects the computational weight. Matching filters are usually
followed by some other image processing operations like thresholding and connected
component analysis to get the final vessel contours. Connected component analysis is
preceded by a thinning process to detect vessel centerlines.

Figure 2.1: Example of filter that enhances all the patterns oriented like the arrow

The matched filter method has some parameters governing its detection process. The
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Figure 2.2: (a) A red-free image. (b) Elaboration result using matching filters.

values of matched filter parameters were proposed in [20] and have been used since then
in all other works for applications and comparisons. In [4] a method is proposed to
improve the thresholding (and hence the segmentation) of the matched filter output
image but the matched filter parameters are never changed. Only in [18] an optimiza-
tion method using the DRIVE [6] database to adjust the matched filter parameters to
increase the performances is presented. The optimization procedure is performed by
comparing each edge detected image to the reference hand-labeled image to obtain the
filter parameters.

2.2.2 Ridge-based approaches

Ridge-based methods treat grayscale images as 3D elevation maps in which intensity
ridges, which coincide approximately with vessel centerlines, approximate the skeleton
of the tubular objects [21]. After creating the intensity map, ridge points are local
peaks in the direction of maximal surface gradient, and can be obtained by tracing the
intensity map from an arbitrary point, along the steepest ascent direction. Ridges are
invariant to affine transformations and can be detected in different image modalities.
These properties are exploited in medical image registration [22, 23|.

In [14] an algorithm based on the extraction of image ridges is discussed. The ridges
are used to compose primitives in the form of line elements. An image is partitioned by
the line elements into patches by assigning each image pixel to the closest line element.
Every line element constitutes a local coordinate frame for its corresponding patch. For
every pixel, feature vectors are computed that make use of properties of the patches
and line elements. The feature vectors are classified using a NN-classifier and sequen-
tial forward feature selection. The algorithm is trained and tested using the DRIVE |6]
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database.

2.2.3 Region growing approaches

Starting from some seed point, region growing techniques segment images by incre-
mentally recruiting pixels to a region, on the basis of some predefined criteria. Two
important segmentation criteria are value similarity and spatial proximity [24]. It is
assumed that pixels that are close to each other and have similar intensity values are
likely to belong to the same object. The main disadvantage of region growing approach
is that it often requires user-supplied seed points. Due to the variations in image in-
tensities and noise, region growing can result in holes and over-segmentation. Thus, it
requires post-processing of the segmentation result.

2.2.4 Multi-scale approaches

Multi-scale approaches perform segmentation at various image resolutions. The main
advantage of this technique is its high processing speed. Major structures (large vessels
in our application domain) are extracted from low resolution images while fine struc-
tures are extracted at high resolution. Another advantage is the high robustness. After
segmenting the thick structures at the low resolution, small structures, such as branches,
in the neighborhood of the strong structures can be segmented at higher resolution.

M. E. Martinez-Perez et al. |25, 15| propose a blood vessels segmentation algorithm
based on a multi-scale analysis. Two geometrical features based on the first and the
second derivative of the intensity image, maximum gradient and principal curvature, are
obtained at different scales by means of Gaussian derivative operators. A multiple pass
region growing procedure is used, which progressively segments the blood vessels using
the feature information together with spatial information about the eight-neighboring
pixels. The algorithm works with red-free as well as fluorescein retinal images.

2.2.5 Skeleton-based approaches

Skeleton-based methods extract blood vessel centerlines. The vessel tree is created by
connecting these centerlines. Different approaches are used to extract the centerline
structure. Some of these methods are: (i) thresholding and then object connectivity,
(ii) thresholding followed by a thinning procedure, and (iii) extraction based on graph
description.



18

2. Vessel segmentation

2.2.6 Mathematical morphology schemes

Morphology relates to the study of object shapes. Morphological operators (MO) apply
structuring elements (SE) to images, and are typically applied to binary images but
can be extended to gray-level images. Dilation and erosion are the two main MO.
Dilation expands objects by a SE, filling holes and connecting disjoint regions. Erosion
shrinks objects by a SE. Closing, dilation followed by erosion, and opening, erosion
followed by dilation, are two further operations. Two algorithms used in medical im-
age segmentation and related to mathematical morphology are top hat and watershed
transformations. [26].

In [27], F. Zana and J. C. Klein present an algorithm that combines morphological
filters and cross-curvature evaluation to segment vessel-like patterns. Blood vessel pat-
terns in retinal fundus images are bright features defined by morphological properties:
linearity, connectivity and curvature of vessels varying smoothly along the crest line.
On the basis, mathematical morphology is used to highlight vessels with respect to their
morphological properties. However, other patterns fit such a morphological description.
In order to differentiate vessels from analogous background patterns, a cross-curvature
evaluation is performed. Vessels are detected as the only features whose curvature is
linearly coherent. The detection algorithm that derives directly from this modeling is
based on four steps: 1) noise reduction; 2) linear pattern with Gaussian-like profile
improvement; 3) cross-curvature evaluation; 4) linear filtering. The algorithm has been
tested on retinal photographs of three different types: fluoroangiography, gray images
obtained with a green filter, and color images with no filter. Occasionally a short pre-
processing step is necessary, since the algorithm only works with bright patterns in gray
level images.

2.3 Model-based approaches

We divide deformable models into two categories: parametric deformable models and
geometric deformable models. These categories are discussed in detail in the next sec-
tions.

2.3.1 Active contours (Snakes)

Deformable models are model-based techniques that find object contours using para-
metric curves, which deform under the influence of internal and external forces. First
introduced by Kass, Witkin, and Terzopoulos in 1987 [28], active contour models or
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snakes are a special case of a more general technique of matching a deformable model
by means of energy minimization. Physically, a snake is a set of control points, called
snazels, in an image that are connected to each other. Each snaxel has an associated
energy that either rises or falls depending upon the forces that act on it. These forces
are known as snake’s internal and external forces, respectively. Internal forces serve
to impose smoothness constraints on the contour while external forces pull the snake
towards the desired image features like lines and edges. We can represent the snake
parametrically by v(s) = (z(s),y (s)), where z(s) and y(s) are coordinate functions
and s € [0, 1]. The snake’s total energy is:

1
Esnake = /0 Fosnake (’U (3)) ds (21)

The smoothness constraint imposed by elasticity energy makes the deformable models
robust to noise. The main disadvantage is that usually it requires user interaction to
initialize the snake. It also requires initial parameters given by the user. Automatic
snake initialization is an active ongoing research topic [29, 30].

In [19] a system inspired to the classical snakes but incorporating specific domain
knowledge, such as blood vessels topological properties, is developed. This approach
takes advantage also from the automatic localization of the optic disc and from the
extraction and enhancement of the vascular tree centerlines. The method achieves en-
couraging results in the detection of arteriovenous structures. The systems performance
is evaluated on the public DRIVE database.

2.3.2 Level set methods

Caselles et al. [29] and Malladi et al. [31] use the Level Set Method (LSM) approach
developed by Osher and Sethian [32] and adapt it to shape recognition to model anatom-
ical patterns. The main idea behind the Level Set Method is to represent propagating
curves as the zero level set of a higher dimensional function which is given in the Eu-
lerian coordinate system. Hence, a moving front is captured implicitly by the level set
function (LSF). The advantages of this approach are:

1. It can handle complex interfaces which develop sharp corners and change their
topologies during the development;

2. Intrinsic properties of the propagating front such as the curvature and normal to
the curve can be easily extracted from the level set function;

3. Since the level set function is given in the Eulerian coordinate system, discrete
grids can be used together with finite differences methods to obtain a numerical
approximation to the solution;
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4. Tt is easily extendable to higher dimensions.
2.4 Tracking-based approaches

Pattern recognition approaches apply local operators to the whole image. These meth-
ods require the processing of every image pixel and numerous operations per pixel.
This can be very time expensive. On the other hand, tracking-based approaches work
by first locating an initial point and then exploiting local image properties to trace
the vascolature recursively. They only process pixels close to the vascolature, avoiding
the processing of every image pixel, and so are appropriately also called “exploratory
algorithms”. They have several properties that make them attractive for real-time high-
resolution processing, since they scale well with image size, can provide useful partial
results, and are highly adaptive while being efficient.

Figure 2.3: Example of segmented images using a tracking algorithm: the three images
refer to results obtained using an increasing number of seeds (from (a) to (c)): we can
appreciate the increasing number of extracted vessels.

Vessel tracking approaches detect vessel centerlines or boundaries by analyzing the pix-
els orthogonal to the tracking direction. Different methods are employed in determining
vessel contours or centerlines. Edge detection operation followed by sequential tracing
by incorporating connectivity information is a straightforward approach. Aylward et al.
in [22] utilize intensity ridges to approximate the medial axes of tubular objects such
as vessels. Some applications achieve sequential contour tracing by incorporating into
the next step the features, such as vessel central point and search direction, detected
in previous steps [33]. Fuzzy clustering is another approach to identify vessel segments.
It uses linguistic descriptions like “vessel” and “nonvessel” to track vessels in retinal an-
giogram images. After the initial segmentation, a fuzzy tracking algorithm is applied to
each candidate vessel region. Some methods utilize a model in the tracking process and
incrementally segment the vessels. A more sophisticated approach to vessel tracking
is the use of graph representation [34]. The segmentation process is, then, reduced to
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finding the optimum path in a graph representation of the image. A disadvantage of
the vessel tracking approaches is that they are not fully automatic and require user
intervention for selecting starting and end points.

We can distinguish three different ways to apply the tracking technique to achieve
vessel segmentation |35]:

e The initial and final points of the vessel (and sometimes also the direction and the
thickness) are manually inserted. Although these algorithms are very accurate,
they are not suitable for the automatic real-time elaboration of fundus retina
images since they need manual inputs and high processing times.

e The initial point and the direction of the vessel are manually inserted; then the
algorithm traces recursively the vessel following its profile inside the image. The
fact that the vessels are not necessarily connected in fundus images makes this
method poorly efficient.

o The algorithm extracts in a completely automatic way the vessel network; a pre-
liminary phase of analysis allows to set a bunch of seed points from which to begin
the elaboration, that consists in the search of the vessel direction and its thickness
thanks to the application of a series of filters. In detail, such filters are a set of
bidimensional correlation kernels that work as:

1. low-pass differentiator filters along the direction perpendicular to the vessel.

2. low-pass filter along the vessel itself; they uniform the grey level of the pix-
els belonging to a certain set (defined by the size of the kernel) to their mean value.

2.5 Artificial intelligence-based approaches

Artificial Intelligence-based approaches (AIBA) utilize knowledge to guide the segmen-
tation process and to extract vessel structures. Different types of knowledge are em-
ployed in different systems from various sources. Possible knowledge sources are the
properties of the image acquisition technique, such as cine-angiography, digital sub-
traction angiography (DSA), computed tomography (CT), magnetic resonance imaging
(MRI), and magnetic resonance angiography (MRA). Some applications utilize a general
blood vessel model as a knowledge source. Smets et al. [36] encode general knowledge
about appearance of blood vessels in the form of 11 rules (e.g., vessels have high in-
tensity center lines, comprise high intensity regions bordered by parallel edges, etc.).
Stansfield [37] applies a domain-dependent knowledge of anatomy to interpret cardiac
angiograms in the high-level stages. According to Stansfield, “Anatomical knowledge is
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embodied within the system in the form of spatial relations between objects and the
expected characteristics of the objects themselves”. Knowledge-based systems exploit
a priori knowledge of the anatomical structure. These systems employ some low-level
image processing algorithms, such as thresholding, thinning, and linking, while guiding
the segmentation process using high-level knowledge. AIBA performs well in terms of
accuracy, but the computational complexity is much higher than for other methods.

2.6 Neural network-based approaches

Neural networks are used to simulate biological learning and are widely used in pattern
recognition. Neural nets implement basically a classification approach. The network is
a collection of elementary processor (nodes). Each node takes a number of inputs, per-
forms elementary computations, and generates a single output. Each node is assigned
a weight and the output is a function of weighted sum of the inputs. These weights are
learned through training and then used in the recognition.

Back-propagation algorithm is a widely used learning algorithm. One problem as-
sociated to learning is that learning depends on the training data set. The size of the
training data set affects the learning process. The training procedure should be re-
run each time new training data is added to the set. Since the aforementioned neural
networks require a training data set, the learning process is a supervised learning. A
different class of neural networks are self-teaching and do not depend on training data
set for the learning. The best known of these class of neural networks is Kohonen fea-
ture maps or [38| self-organizing networks. Interested readers are referred to |39, 40|,
and Haykin [41] for more information on neural networks.

In medical imaging, neural networks are mainly used as a classification method
where the system is trained with a set of medical images and the target image is seg-
mented using the trained system. One of the advantages that make neural networks
attractive in medical image segmentation is their ability to use nonlinear classification
boundaries obtained during the training of the network. One of the disadvantages is
that they need to train every time a new feature is introduced. Another limitation is
the difficulty of debugging the performance of the network.

2.7 Wavelets

To increase the contrast between the background and the areas of the image with high-
est variations of the grey levels (e.g. the areas corresponding to the blood vessels) it
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is possible to apply specific transformations to the image itself. An easy one is the
so called Haar transform, that is actually an averaging and differencing operation. It
operates by transforming a 1 x N array of values into a 1 x N array of results. The first
[1...N/2] elements of the array are the averages of pairs of the [1...N] original elements,
and the following [N/2 + 1...N] elements in the array are the detail elements from the
[1...N] original elements. For the first pair of elements in the initial array, [z1, 22, ...],
the first element in the result array is (z1 +x2)/2, and the corresponding detail element
at position N/2is (z1 +x2)/2 — 1. As the average element is equidistant from both x;
and xa, to restore the initial array we simply subtract the detail element from the aver-
age element (this gives us x1) and add the detail element from the average, to restore x.

For 2-dimensional images the transform operation is performed on all rows of the
image and then again on all columns of the output from the first application of the
transform. In the typical transform applied to images using standard inverted cartesian
geometry, the average elements are stored in the top left quadrant of the input image
and detail elements stored in the remaining 3 quadrants of the image. The average ele-
ments from the top left corner are then processed in the same way as the entire image
was to begin with, to perform the second level of the transform. This process can be
repeated as many times as desired, each time further reducing the size and resolution
of the output image. Figure 2.4 sketches the way how the Haar transform works, while
an example is given in Figure 2.5.
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Figure 2.4: Haar transform applied to vectors and matrixes: the two vectors at the left
represent the application of the Haar transformation on row vectors and column vectors
(average elements in red, detail elements in green). At the right, the transformation
of a matrix NxN is represented, first by row, then by columns of the matrix resulting
from the first phase of the transform. The colors point out the type and the order of
the result. We get so a matrix NxN that contains four images, every of dimension N/2
x N/2, each one being the result of a different transformation of the original image.
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(a) (b)

Figure 2.5: An example of application of the Haar transform to a typical fundus retina
image.

In [42] a method for automated segmentation of the vascolature in retinal images is pre-
sented. The method produces segmentations by classifying each image pixel as vessel or
nonvessel, based on a pixel’s feature vector. Feature vectors are composed of the pixel’s
intensity and two-dimensional wavelet transform outputs taken at multiple scales. The
wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and
vessel enhancement in a single step. A Bayesian classifier is used with class-conditional
probability density functions (likelihoods) described as Gaussian mixtures, yielding a
fast classification, while being able to model complex decision surfaces. The probability
distributions are estimated on the basis of a training set of labeled pixels obtained from
the manual segmentations stored in the DRIVE databases.



Chapter 3

The multiscale analysis

In this thesis we develope a novel algorithm for vessel segmentation in fundus retina im-
ages. The algorithm is modular and is made up of two fundamental blocks. The former
is devoted to vessel enhancement involving “multiscale theory”. Two cases are studied:
linear multiscale and an edge-preserving non-linear multiscale. In this chapter we deal
with the multiscale paradigm and we introduce a proper mathematical framework based
on both a differential and a variational approach. In the last part of this chapter we use
this framework to better understand some general properties of the multiscale analysis.
In the next two chapters we will use the knowledges introduced in this chapter to clarify
the behaviour of the multiscale cases that will be introduced.

As outlined in the previous chapters, computer-based analysis for automated seg-
mentation of blood vessels in retinal images helps eye care specialists to screen large
populations for vessel abnormalities. The width of retinal vessels can vary from very
large to very small. This property of retinal images makes a completely automated
vessel segmentation very difficult. Multiscale techniques have been developed to isolate
information about objects in an image by looking for geometric features at different
scales, i.e. with different sizes [43].

Within this framework, we pass from the original image to smoothed versions, which
still contain significant information. The main parameter of this preliminary transform
is the “scale”, a general parameter which measures the degree of smoothing, or more
trivially, the size of the neighbourhoods which are used to give an estimate of the bright-
ness of the picture at a given point. The so-called “multiscale analysis” tends to give
less local and therefore more reliable information on the grey level than the original
fluctuating “pixel”.

If we want to extract a particular feature from an image, such as the vessels, we
apply the feature detector at all scales, and then select the scale corresponding to local
maxima, with respect to the scales, of measures of the feature strength. Lindeberg in
[44] has shown empirically that for a tube-like feature as a vessel, a local maximum can
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be found at the scale corresponding to vessel width.

Mathematically, we define without loss of generality the “scale space” of an image
I(z,y) for a “multiscale analysis” T; the sequence of pictures I(x,y,t) = (T1) (z,y)
that we obtain by applying the operator T; to I. The operator 7T; depend only on
one parameter . For example, if we consider the classical multiscale analysis due to
the convolution of an image I with gaussian kernels with different standard deviations o

I(z,y;0) = (To1)(z,y) = Gy x I (3.1)
with
1 _12+y2
G, = G(.’L‘,y; U) = 202 e 2° (32)

in this case we have t = o. In other cases, if we refer to a multiscale analysis modeled
by a diffusion Partial Differential Equation (PDE), the parameter ¢ corresponds to the
diffusion time.

Roughly speaking, 731 can be thought as a semi-local version of I where a neighbour-
hood of size ¢t around (z,y) has been exploited for determining the value of I(z,y,t).
If T; is a linear operator, we have linear multiscale analysis, otherwise we have
non-linear multiscale analysis. An example of image at a certain scale in shown in
Figure 3.1.

(2) (b)

Figure 3.1: (a) The image I(z,y) (b) The same image at a certain scale.
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We said that multiscale analysis is useful in vessel extraction tasks. Different algo-
rithms have been proposed in the literature about this topic (see for istance [15, 45, 46]).
In the next two chapters we will describe vessel enhancement algorithms based on this
kind of analysis. In this chapter we detail the multiscale approach introducing some
properties or axioms. Then we show how, by satisfying these axioms, every sequence of
pictures I(x,y,t) = (T;I) (x,y) can be related to the solution of a second order PDE:

a1
o = F (VL H(D) (3.3)

where VI is the image gradient and H(I) the Hessian matrix (see Section 1.5).

In the literature, the first description of a multiscale analysis referred to an operator
T; and to linear scale spaces. Alvarez et al in [47] gave an axiomatic description of the
multiscale properties and proved the relationship between operator-based multiscale
analysis and PDEs, as introduced with Equation (3.3).

The results introduced in the first part of this chapter are valid for generic PDEs.
In the second part of this chapter, we deal only with the so called divercenge form, a
particular diffusion equation also used in image processing. This equation allows us to
establish a link between the differential form and the variational form. We will define
the mathematical framework for a variational description of multiscale analysis.

We rewrite then the equations given in the divergence form using an equivalent for-
mulation, known as oriented 1D Laplacians form, which allows us to easily point out
some characteristics of the diffusion equation we are going to work with.

3.1 Axioms of multiscale analysis

Alvarez et al in [47] introduced an axiomatic framework for the use of PDE in multiscale
analysis models. In particular they formally stated and proved that PDEs are associated
to multiscale analysis operators T; which satisfy a series of formal properties, or axioms.
An overview of these axioms is presented in this section. We introduce and briefly
describe them, without the aim of being exhaustive. The first six axioms (strong and
weak causality, comparison principle, grey-level-shift invariance, grey-scale invariance
and translation invariance) state some desiderable properties from the vision theory
point of view. The last three axioms (generator, regularity, locality) refer to strictly
mathematical properties. They are necessary in [47] to demonstrate the relationship
between operators 7; and PDEs.
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3.1.1 Causality

We first consider an axiom, which in vision theory is called “causality” property, or
“pyramidal architecture” property. This axioms states that 7; can be computed from
T, for any s <t, and Tp is the identity. This is natural, since a coarser analysis of the
original picture is likely to be deduced from a finer one without any dependence upon
the original picture. Of course, the finest picture analysis is the identity.

A strong version of this property is:
[Strong causality] To(I) = I, Ty 0 Ty(I) = Ts1(I) on R2, for all s,t >0 and I.

If [Strong causality| is satisfied, the visual process is reduced to a single loop, if the
scales are discretized. Indeed, T} is equivalent to the n-th iteration of T:. A weaker
version of the pyramidal architecture hypothesis is the following: we include Ty = Tio
in a family of transition operators T ; indexed by 0 < s,¢ < 0o and satisfying

[Weak causality] Tis = Tiqs,s 0 Ts for all 0 < s,t < o0.

In order to get back to [Strong causality|, one needs to assume that Tiss = Tip.
From the viewpoint of the theory of perception, causality in general is a coherent hy-
pothesis, if the image perceptual analysis consists in a sequence of filters which are
applied sequentially. Since new images are constantly arriving at the retina, the image-
analysis process is thought of as a flow of the picture through different filters, each
associated with a scale .

3.1.2 Comparison principle

The comparison principle is an obvious order-preserving property (the “maximum prin-
ciple”). It means that no enhancement is made, but just a smoothing of the original
image. Thus if one image G is everywhere brighter than another image I, this ordering
is preserved by the operator T;

[Comparison principle] Ty(I) < T;(G) on R? for allt > 0 and I, G such that I < G.

This axiom is equivalent, in the case where T is a linear filter defined by 131 = I« F}, to
the inequality F; > 0. Thus, this axiom is the nonlinear generalization of a nonnegative
smoothing kernel.
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3.1.3 Grey scale invariance

This axiom and the next one are called the “morphological axioms” and are well-known
in mathematical morphology. They state that image analysis must be invariant under
fluctuations of light and under changes of position, orientation and scale of the planar
shapes.

In the case of digital pictures, many electronic devices are applied successively to an
image before its arrival at the human eye or at some automatic image-analysis device:
since the grey scale of the resulting image has been changed by each device, the only
sound assumption about the information-preserving properties of the whole chain of
captors and transmittors is that they might preserve the order of grey levels. In other
terms, if some point or some region was brighter than an another in the original picture,
this order should be preserved in the final picture.

We begin by stating that the image analysis must be independent of the (arbitrary)
grey-level scale. In the following, we shall always assume the following weak form of
this axiom:

[Grey-level-shift invariance] T;(0) = 0, Ti(I + C) = Ty(I) + C for any I and any
constant C.

This axiom means that no a priori assumption is made about the range of brightness
of a picture to be observed. Of course, this is not absolutely true for natural or artifi-
cial photosensitive systems. It is however true that the interpretation of a photograph
is widely independent of its exposure time: the photograph can be dark or light and
yet be identified as essentially the same picture. This axiom is equivalent, in the case
where T; is a linear filter defined by T31 = I Fy, to the requirement that [ Fy(z)dz = 1.

The strong form of the first morphological axiom is

[Grey-scale invariance] Ty (h(I)) = h (Ty(I)) for all I and all t > 0, where h is any
nondecreasing real function.

The function A is simply an order-preserving rearrangement of the grey levels. Notice

that the second relation of |Grey-level-shift invariance| is a particular case of |Grey-scale
invariance].

3.1.4 Translation invariance

Now we introduce an axiom which states that all points of the space are a priori equiv-
alent:
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[Translation invariance] Ty (tp,- 1) = 7, (T; - I) for all h in R, t > 0, where
(Th I) (ﬂj‘,y) = I($+h17y+h2)

In other words, there is no a priori knowledge about location of any feature of the
picture.

3.1.5 Regularity, Locality and Generator

We present three strictly mathematical properties. These axioms are necessary condi-
tion in the demonstration of the relationship between the operators 73 and PDEs. We
shortly introduce them without the aim of being exhaustive, for more details please
refer to [47].

We define, the so called infinitesimal generator A for the operator T; as the following
limit, provided that it exists:

[Generator] (T,1 — 1)/t — A[I] uniformly on RN, as t — 0% for smooth I.

A way of justifying [Generator| is to deduce it from axioms more natural from the
viewpoint of perception. An example of such an axiom, which, combined with the
other axioms of the theory, implies [Generator]| is

[Regularity] ||T:(I + hG) — (T3(I) + hG)||, < Cht for all h, t in [0,1], for smooth
I and G, where of course C depends on I and G.

This last axiom states a natural assumption of continuity of 73 and is therefore a strong
justification for the existence of an infinitesimal generator for the multiscale analysis.
We next require an axiom on the local character of the multiscale analysis T} for ¢ small
(and therefore the local character of the infinitesimal generator A):

[Locality] {T:(I) — Ty(G)} () = o(t) as t — 0T, for all smoth I and G such that
DI (z,y) = D*G(z,y) for all || > 0 and for all x.

where D® denotes every measure associated with a derivative of a-th order. For exam-
ple, if @ =1, we can have D*I = % or D] = g—; or D*I = ||VI||. Roughly speaking,
this last axiom means that the value of T3(I) for ¢ small, at any point x, is determined
by the behaviour of I near x.
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3.2 Differential form of regular multiscale analysis opera-
tors

Now we introduce an important result that allows us to express the commonly used
multiscale analysis in a different way: we will report a theorem, proved in [47], stating
that the main multiscale image processing models can be related to parabolic partial
differential equations (PDEs) of order 2.

First of all, it has been proved that if T} is a multiscale analysis that satisfy the “ar-
chitectural” conditions [Strong causality|, |Regularity|, |Locality|, together with |Com-
parison principle|, and the morphological conditions [Translation invariance| and [Grey-
level-shift invariance|, then there exists a “generator” A for that operator T}

Then, considering the previous axioms and also |Locality|, it has been proved that
there exists a continuous function F such that, for any given picture I, I(z,y,t) = T3
satisfies

oI
5 = F(VIH(D) (3.4)

where F is the infinitesimal generator for T; (i.e. we have F(VI, H(I)) = A[I]).

Conversely, any partial differential equation of the kind of Equation (3.4)
corresponds to a multiscale analysis satisfying the above mentioned axioms.

To better understand the influence of each axiom on the result, we show what would
happen if we relax some of the axioms necessary for Equation (3.4). For example, if
instead of the [Strong causality|, we have the [Weak causality|, and the obvious adapta-
tion of the other axioms to T} ,, the same result has been proved with a time-dependent
F

ol
— =F(VI,H(I),t) (3.5)
ot

Moreover, for example, if we remove [Translation invariance|, the equation becomes
space-dependent, and F' has the form

or

= = F(VLH(I), ) (3.6)

Notice that, in the same way, a dependence of F' on I, such as
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oI
o = F(VLH(I),1.1) (3.7)

only contradicts [Grey-level-shift invariance].

We remark that now the “time” t is the scale parameter: larger values of ¢ lead to
simpler representations. According to the framework defined above we can observe that
multiscale analysis realizes (in general) a nonlinear diffusion filtering: the image is
simplified step by step and its variations are minimized. In the literature this simplifi-
cation process of a given image is called regularization.

3.2.1 The divergence form

During the last two decades, nonlinear diffusion filters have become a powerful and
well-founded tool in multiscale image analysis. Many papers have appeared proposing
different models, investigating their theorethical foundations, and describing interest-
ing applications. We focus on approaches in divergence form, a particular case of
Equation (3.4). In particular, this form is interesting since will allow us to establish
in the next section a link between the differential form and an alternative variational
definition of a similar problem.

We have referred to a given image I(z,y) calling I(z,y,t) the scale space related
to it. For the sake of clarity in the following we rename the original image I(z,y) as
Iy(z,y) to more clearly distinguish this from I(x,y,t). From now on, we will be inter-
ested in regularization due to partial differential equation of the class:

oI
5 = VW (IvI)vI) (3-8)

on % (0,00) with the original image as initial state and homogeneous Neumann bound-
ary conditions:

I($aya0) = Io(ﬂi‘,y) on (2 (39)
oI
s 0 on 99 x (0,00) (3.10)

where n denotes the normal to the image boundary 0.
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The function g (||VI]|) is commonly called diffusivity. It is a not-increasing posi-
tive function, that basically, in the non linear case, characterizes the diffusion behaviour
by blurring low-contrast regions much more than high-contrast locations (the edge of
the image). The function ||VI|| g (||VI]||) is called flux. For reasons that will be clear
only in Section 3.4, we have to choose the function g so that to have a non-negative
flux for every value ||VI]||.

For such a class of equations the following properties can be established:

1. (Well-posedness and smooth results)
There exists a unique solution I(xz,y,t) in C* (2 x (0,00)) and it depends con-
tinuously on Io(z,y) with respect to the L%(Q) norm.

2. (Average grey level invariance)
The average grey level of the original image

W= @/Io(a;,y) dxdy (3.11)

w

1s not affected by non linear diffusion filtering:
1
9] / I(z,y,t)dedy = p (3.12)

forallt >0

3. (Convergence to a constant steady state)

limy o0 I(z,y,t) = pin LP(Q), 1 <p < o0

The existence, uniqueness and regularity is proved in [48], the other results are
proved in [49].

Continuous dependence of the solution on the initial image is of significant practical
importance, since it guarantees stability under perturbations. This is relevant when
considering stereo images, image sequences or slices from medical CT (Computed To-
mography) or MR (Magnetic Resonance) sequences, since we know that similar images
remain similar after filtering.

Average grey level invariance is a property which distinguishes nonlinear diffusion
filtering from other PDE-based image processing techniques, such as mean curvature
motion [50]. The latter is not in divergence form and, thus, can not be conservative.
Average grey level invariance is required in some segmentation algorithms such as the
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Hyperstack [51].

The third property tells us that, for ¢ — oo, diffusion filtering tends to a constant
image with the same average grey level of Ij.

3.3 The variational form

Variational methods constitute an interesting alternative to nonlinear diffusion filters.
The idea behind regularization with variational methods is the following. Image reg-
ularization can be done by minimizing energy functionals measuring the global image
variations. The acknowledged aim is to suppress low image variations mainly due to
noise, while preserving the high ones representing the image contours. Typical varia-
tional methods for image regularization (such as |52, 53, 54, 55, 56]) provide a filtered
version of some given image Iy as the minimizer I* of

E(I(z,y;7)) = AQ(I,Ix,Iy)dxdy
= /\Ifl—i-T\Ifgdxdy
Q

_ /Q(I—IO)2+7-<I>(HVI (2,y)])) dzdy (3.13)

where ®(s) : R — R is an increasing convex function for s > 0 (®' > 0 and ®” > 0).
So we want to find the function I*(z,y;7) that minimizes Equation (3.13):

E(I") = min B (1) (3.14)

The first term ¥, in the integral is commonly called fidelity term and encourages sim-
ilarity between the regularized image and the original one, while the second term W,
is named regularization term and rewards smoothness, i.e. penalizes the presence of
edges in the image. The smoothness weight 7 > 0 is called regularization parameter.

For this class of regularization methods one can establish a similar well-posedness
and scale-space framework as for nonlinear diffusion filtering, if one considers the regu-

larization parameter 7 > 0 as scale. In [57] the following properties have been proved:

1. (Well-posedness and regularity)
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Let Iy € L>(Q2). Then the functional Equation (3.13) has a unique minimizer
I* in the Sobolev space H'(QY). Moreover, I* € H?*(Q) and 11|l 12(q2) depends
continuously on T

2. (Average grey level invariance)

The average grey level

1
W= @/Io(:n,y) dxdy (3.15)

remains constant under regularization:

@/I*(aﬁ,yn’) dxdy = p (3.16)

forallT >0

3. (Convergence to a constant image for 7 — o0)

limr oo [I7(2,y37) — pll po(q) for any 1 < p < oo

Let us now give an intuitive reason for this large amount of structural similarities
between diffusion filters and regularization methods.

3.3.1 The Euler-Lagrange equations

Finding the function I* that minimizes the functional F(I) is not a trivial problem.
Nevertheless, the FEuler-Lagrange equations give a necessary condition that must be
fulfilled by I'*(z,y;7) to reach a minimum of E(I).

Let us define a function F:

0 0 0o 0 0P
F=—[I-L)? -10—— —7——— 3.17
o1 U =D =551 "oy o1, (3.17)
The solution of the variational problem can be found out solving
F=0 (3.18)
We calculate now more explicity each term of F:
1. 9
— (I —1p)*=2(I — Iy) (3.19)

oI
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2,
902 _ 9 9e(|VI(z,y)]) 9|VI(z,y)|
Ox 01, oz O||VI (z,y)| I,
9|, L
=~ "oz [(p NGEESE (3:20)
3.
902 _ 0 02(IVI(z,yl) d|VI(z,y)]
9y 01, dy O|IVI(z,y)l aly
d I
= 71— | L — (3.21)
Oy 12+ I2
Concluding, we have:
o[ @ o @
e e A e Al
q)l
= 20 —1I)) -7V [ —=VI 3.22
1= () (322

On the basis of this results we can introduce a link between the divergence and the
variational form, as explained in the next section.

3.3.2 Link between variational and divergence form

We have seen that the solution of a variational problem can be obtained by solving

F=0 (3.23)
that can be rewritten as follows:
(I -1y 1 P’
~—~=-V|-—=—=VI 3.24
T 2 IVI|| ( )

This can be thought of as a fully implicit time discretization of the diffusion filter

or 1
a5t = 3 v WwIvIh Vi) (3.25)
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with a time discretization step of size 7 and

q)/
V1]

g (IVI])) = (3.26)

One may thus regard our well-posedness and multiscale framework for regularization
methods as a discrete-time framework for diffusion filtering, estabilishing a tight rela-
tionship between I(z,y,7) and I(x,y,t) [58]; in other words, we can write:

Iz, y;7) = 1(z,y,1) (3.27)

Moreover, to avoid the direct and difficult solution of Equation (3.22), a classic iterative
method is used: the gradient descent. Actually, Equation (3.22) can be considered as
the gradient of the functional F(I). Starting from I as initial condition and following
the opposite direction of this gradient leads to a local minimizer I** of E:

o = (3.28)
a _ _p '
ot

Note that this PDE evolution has been parameterized with an (artificial) time variable
t. It describes the continuous progression of the function I until it minimizes E(I). Then
the PDE speed vanishes: 91/0t = 0.

For t — oo I tends to a steady state I** that is a local minimizer of E(I). It has
been proved that if ® is a convexr function, we have only one minimum and then the
minimum obtained in this way is the global one (I** = I*). More in the general, if ® is
not conver, the starting point Iy must be carefully chosen, ideally near the global min-
imum of the functional E(I). Choosing different initializations Iy may lead to different
results (different local minima).

Concluding, the Euler-Lagrange equations make the link between differential form
and variational form (through Equation (3.26)) in image regularization. Generally, we
will be more interested in the gradient descent itself than in the functional minimiza-
tion, and we will often use the term PDE flow to describe such evolutions. The reader
is referred to [59] for an exhaustive theory about the calculus of variations.
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3.4 The oriented 1D Laplacians form

The PDEs in the divergence form are widely used in the literature and are useful if we
want to work with a framework strictly related to equivalent variational formulations,
but don’t give us direct information about the diffusion behaviour. We can more di-
rectly understand it if we rearrange the diffusion equations we have considered until now
in a new equivalent form, called oriented 1D Laplacians form. In other words we
are interested in establishing a further correspondence between the previous definition
of a differential image processing problem in the divergence form

ol Y}
5= \V4 <WVI> =V (g(|VI|)VI) (3.29)

and the following equation:

oI

E = c1l,, + colyy (330)

being 144 the second derivative of I along the generic direction d = [d, dy]

Iyg = (d"H)d (3.31)

and H the Hessian matrix.

This is the so called oriented 1D Laplacians form, that was firstly introduced to
describe the behaviour of the Perona-Malik diffusion equation [60, 61]. Roughly speak-
ing, Equation (3.30) can be interpreted as the sum of two coexistent and oriented “heat
flows” (recalling a sound analogy with the heat equation 01/9t = V2I = I, + I,,) that
smooth the image along the directions z and v, respectively, by weighing the two flows
with coefficients the ¢; and co.

In our case, Equation (3.29) is equivalent to Equation (3.30) if:
1. cgi=g

2. co:=g+|VI|d

v,

.7z =
3 Nzl
4, vi= YL
VT

In Appendix A we show the proof of this result.
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The unit vectors z and v correspond respectively to the directions orthogonal and
parallel to the gradient. Note that z is everywhere tangent to the isolevel lines I(z,y) =
a (for every fixed t) of the contours in the image. The set (z,v) is then a moving or-
thonomal basis whose configuration depends on the current point coordinate x = (z,y)
(Figure 3.2)

Figure 3.2: An image contour and its moving vector basis (z,v)

In conclusion, the values (z, v, ¢y, c) define the local geometry of the diffusion pro-
cess. In the next subsection we will use the oriented 1D Laplacians form to mathemati-
cally characterize some properties of the diffusion according to the framework described
to now.

3.4.1 Link between variational and oriented 1d Laplacians form

Since it exists a link between the variational form and the divergence form and a link
between the divergence form and the oriented 1D Laplacians form, we can establish
a direct link between the variational form and the oriented 1D Laplacians form. In
particular, this will allow us to understand why at the beginning of Section 3.3 we
have imposed to the regularization term of the functional Equation (3.13) to be convex.
Moreover it will allow us to understand why we have imposed to the flux associated to
the PDE in the divergence form to be non-negative.

Starting from the definitions of ¢; and c¢o introduced in the previous section and
considering Equation (3.26) we have:

1 @
2|vI

=g =



40

3. The multiscale analysis

1 @ 1 0 P’
omarsr = L[ 2 (@]
o 2 VI e U

_ L& 1L 1||[”W”‘I’”—@’}
2|vI| 2 V1|

1
— _@// . 2
: (3.52)

These results point out the link between the variational representation (introduced with
Equation (3.13)) and the oriented 1D Laplacians one.

These results are useful to fix up the conditions that let us to avoid inverse diffu-
ston, an unstable process that enhances image features, and among these the noise. If
it happens, no uniqueness of the solution and no stability of the process can be expected.

We do not have inverse diffusion when:

1. c120:>¢>’20

2.00>20=9">0

The specified equivalencies hold by considering the range 6 = ||[VI| > 0.

To avoid inverse diffusion the function ®(d) has to be monotonically increasing and
convex, according to what stated at the beginning of Section 3.3. Moreover, since

®’ = §g(d), we have also to impose that the flux should be non-negative, according to
what stated in Section 3.2.1

3.4.2 About isotropic diffusion

Concluding, we want to show explicitly under which conditions we have the so called
isotropic diffusion. A diffusion is named “isotropic” if

Cl1 = C (333)

Considering the already known results

o = g+||VI|d (3.34)
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then Equation (3.33) is equivalent to

g = g+|VI|g
/
= g =0
= g=K VK € R (3.35)

In this case the magnitude of K has effect only on the speed of the diffusion but not
on its nature. We can set K = 1 without loss of generality. Then, according to Equa-
tion (3.8), the only PDE corresponding to an isotropic diffusion is:

ol
— =V(1V)=V?I (3.36)
ot

This the so called heat equation, that will be recalled in the next chapter. All the other
kinds of PDEs, in the divergence form, known in the literature realize the so called
anisotropic diffusion.

Please note that in this thesis, we will use the term anisotropic as the opposite of
isotropic, to designate a regularization process that does not smooth the image with
the same weight in all the spatial directions. In the literature, some authors have dif-
ferent definitions. For instance, Weickert [49| introduces the notions of homogeneous
and inhomogeneous filtering, as well as different definitions for the terms isotropic and
anisotropic.
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Chapter 4

A supervised vessel segmentation
algorithm using linear scale space

Blood vessels can be viewed as tube-like structures of different widths, lenghts and ori-
entations. To detect this kind of structures in a fundus retina image, we must search
for the geometrical feature that describes them at best, finding the scale that gives us
the more accurate results. The vessel extraction can be obtained by resorting to dif-
ferent methods (see Chapter 2 for an overview), either rule-based or supervised. In the
latter case, the rule for the vessel extraction is “learned” by the algorithm on the basis
of a training set of reference manually-processed images. An algorithm with a partial
supervision strategy has been recently proposed [17].

In this chapter, we propose a modular supervised algorithm for the segmentation
of retinal blood vessels on M x N red-free images. The algorithm performs two main
operations, vessel enhancement and image binarization (plus cleaning), and it has two
main characteristics:

o flexibility, due to its supervised nature

e modularity.

If we consider a red-free image I(z,y) as a surface in a 3D space (z,y,I), we can
represent fundus retina image as shown in Figure 4.1 (detail).

If we focus our attention on a section of the surface in the direction orthogonal to a
vessel, we have locally a convex curve. This will be the basic idea used in the first part
of our algorithm to achieve the vessel enhancement.

Usually, all the parameters in algorithms for image processing are heuristically fixed

a priori. In other cases, some parameters are fixed by using optimization procedures
[18]. In this chapter we determine two “optimal” significant parameters by properly

43
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Figure 4.1: On the left: detail of a generic fundus image. On the right: the same crop
in a 3D representation.

maximizing some Measures Of Performances (MOPs) for the algorithm applied to a
training set. This makes the algorithm supervised.

The optimization procedure our supervised approach is based on makes this algo-
rithm suitable for different purposes. Indeed, the results depend on the chosen MOP
and different MOPs can be used to highlight different features in the processed images.
This flexibility combines with a modular structure of the algorithm, resulting in quite
short computation times. As a matter of fact, the two main processing blocks are made
up, in turn, of sub-blocks, thus making the algorithm highly modular, with the pos-
sibility of applying only a subset of the possible processing operations. Most of the
sub-blocks, moreover, can be implemented by enhancing either the processing accuracy
or the simplicity. In the latter case, one reduces the quality of the results in favor of
lower complexity and computation times [62].

We realize vessel enhancement through scale-space according to the multiscale anal-
ysis theory and the most critical parameter in this part of the algorithm is the scale
factor. The image binarization is based on a simple thresholding procedure and the
most critical parameter in this part of the algorithm is the threshold. Generally speak-
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ing, the sub-blocks the algorithm is made up of are not new. The main novelty elements
are

e the use of optimization procedures (supervised, being applied to an image database
with reference images) to determine two “optimal” parameters (scale factor and
threshold);

e the combination of the sub-blocks to produce an accurate result as a trade-off
between processing quality and computation complexity.

The obtained results are compared with those of other methods proposed in the
literature.

In particular, using the 20 images of the DRIVE (Digital Retinal Images for Vessel
Extraction, see Section 1.3) database test set, we obtain a mean value of 0.9419 for the
Maximum Average Accuracy and a mean value of 0.7286 for the agreement between
two observers (K-value). The preliminary optimization step can take several minutes,
but once the “optimal” parameters are obtained, each segmentation of a fundus image
requires only few seconds. Then this algorithm represents a good trade-off between
accuracy of the results and computational complexity.

In Section 4.1 we present the algorithm. It involves a linear multiscale analysis, in-
troduced by using the mathematical framework discussed in the previous chapter. After
the image binarization, we want to determine the value of the “optimal” parameters: the
used MOPs are summarized in Section 4.2, while the target function which is used to
determine the optimal parameters’ values is defined in Section 4.3. In Section 4.4 some
results are presented and commented and the algorithm performances are discussed.
Some concluding remarks are drawn in Section 4.5.

4.1 The algorithm

The algorithm is made up of two fundamental blocks (see the dashed boxes in Fig-
ure 4.2), exhibiting in turn a modular structure. The first block performs a preliminary
contrast enhancement (to compensate the different illumination conditions of fundus
images) and is devoted to vessel enhancement, while the second one provides a binary
image by resorting to both a thresholding procedure and some cleaning operations.

Of course, each block may be replaced by other (modular) algorithms. For instance,
for the first block one can resort to a multi-scale method for retinal image contrast
enhancement based on the Contourlet transform [63] or to an algorithm for luminosity
and contrast normalization [64].
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Figure 4.2: Block scheme of the algorithm. The grey elements are related to the super-
vised training algorithm that determines a prior: the “optimal” parameters o and npp,.
Once these parameters are fixed, the processing algorithm reduces to the black part of
the scheme.

4.1.1 Contrast enhancement pre-processing

To compensate the effects of a non uniform lighting, common in this kind of images
and due to changing conditions during the acquisition process, a pre-processing of the
images has to be done. To this end, we use the function ADAPTHISTEQ), contained
in the Image Processing M atlab® Toolbox, which performs a Contrast-Limited Adap-
tive Histogram Equalization (CLAHE) [65, 66].

The CLAHE algorithm operates on small regions in the image, called tiles, rather
than on the entire image. Each tile’s contrast is enhanced, so that the histogram of the
output region approximately matches a uniform histogram. The neighboring tiles are
then combined using bilinear interpolation to eliminate artificially induced boundaries.
The contrast, especially in homogeneous areas, can be limited to avoid amplifying any
noise that might be present in the image.

We call Iy(x,y) the image that we obtain after the contrast enhancement. In Fig-
ure 4.3 an example is shown.

4.1.2 Vessel enhancement

To perform the vessel enhancement, we adopt the method introduced in [67] and 68|
and then used in [15] to process two-dimensional fundus images. The vessel enhance-
ment procedure, devoted to highlight geometric tube-like structures, is based on the
Hessian operator H of the function I(z,y;0).
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(a) (b)

Figure 4.3: Example of contrast enhancement. (a) Original image. (b) Enhanced image

The linear scale-space

We call I(z,y;0) the scale-space due to a linear multiscale analysis and then a linear
diffusion of the image to be processed Iy(x,y). As pointed out in Section 3.4, lin-
ear diffusion is an isotropic diffusion and then realizes an isotropic regularization.
It represents the easier way to smooth and simplify data and has consequently been
reached by several mathematical formulations: from the restoration scheme proposed
by Tikhonov in [69] to the classic linear filtering of images (for istance in the Fourier
spectral space [70]), the proposed methods lead to the same regularization behaviour.

We use Iy(z,y), the enhanced fundus retina image, to start our elaboration. Using

the framework introduced in the previous chapter we can give a variational formulation
of this problem:

E(I(e.y:0) = /Q (I~ 10)* + 0 |VI(z, )| dedy

_ /9(1_10)2+J ((%)Z (%ﬁ/’y))j dedy  (4.1)

where, with respect to Equation (3.13), in this case we have

®(s) = s> — o(|VI]) = IVI]* (4.2)
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By remembering the link between the variational form and the differential one, ex-
pressed in Equation (3.26), we can calculate:

1@ 12|V
VT = 3% = 2 v

1 (4.3)

Now, we are able to formulate the same problem by using the divergence form:

or 1 0M

and by using I as initial condition. We have obtained the well known heat equation,
used in physics, for istance, to describe heat flows through solids. As shown in the
previous chapter only linear multiscale realizes an isotropic diffusion.

Koenderink noticed in [71] that the solution of Equation (4.4) at a particular time
t is the convolution of the original image Iy with a normalized 2D Gaussian kernel G,

of standard deviation o = v/2t:
I(z,y;0) = (T,1o)(x,y) = Gy * Iy (4.5)
In a more explicit notation:
I(z,y;0) = //Io(x —u,y —v)Ge(u,v) dudv (4.6)
with

1 w2+y2

= W e 202 (47)

Gy = G(z,y;0)

This means that the regularization is linear (based on a convolution). The regulariza-
tion behavior is then typical of a linear multiscale analysis: the signal is blurred little
by little in an isotropic way during the PDE evolution (see Figure 4.4).

Note that convolving an image by a Gaussian kernel is equivalent to multiply the
Fourier transform of this image by another Gaussian kernel: the isotropic regularization
behaves then as a low-pass filter suppressing high frequencies in the image I.

Unfortunately, image contours are high frequency signals as well as noise. As illus-
trated in Figure 4.5, they are quickly blurred by such an isotropic scheme. The need
to resort to more complex non-linear and anisotropic regularization methods quickly
appeares (in particular for noise removal image restoration purposes). Nevertheless, a
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Figure 4.4: Example of linear scale-space: 0% =2,4,8,16,32, 64.
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basic linear multiscale analysis maybe enough for our segmentation task, keeping the
global implementation very simple. Moreover, in the next chapter we will investigate
the improvements in the quality of the results that we obtain by using a non linear
multiscale analysis.

Evaluation of the Hessian matrix and its eigenvalues

We have now to evaluate the Hessian matrix along the scales and then the second order
spatial derivatives of Iy. We have shown that Gaussian kernel is the scale-space operator
at the basis of the linear multiscale analysis. There is an important additional result:
the spatial derivatives of the Gaussian kernel are also solutions of the heat diffusion
equation, and, together with the zeroth-order Gaussian (see Equation (4.7)), they form
a complete family of differential operators |72].

Since we may commute the differential and the convolution operators

o oG
5 (T0# Go) = I x —— (4.8)

the derivative of Iy can be found by convolving the image with the derivative of a Gaus-
sian. This is true for derivatives of any order.

Then, the Hessian matrix of Iy * G can be expressed as follows:

H(Io(e.9) » Glavyi ) = | [0 i) Jen i) (49)

where
0G(x,vy;
Lag(s5i0) = To(w9) + 22T o e fay) (4.10)

For a given value of the scale parameter o, the eigenvalues Ay of the Hessian matrix
H measure the convexity of Ip * G in the corresponding eigendirections [21]. At each
point (z,y;0), the eigenvalue with the maximum absolute value is denoted as A(z, y; o)
and the corresponding eigenvector is parallel to the direction of maximum curvature of
the grey level. In the considered red-free images, a high positive curvature marks the
presence of ridges in the low-pass filtered surface I % G, i.e., the presence of vessels in
the image. Then, the processed image can be obtained as follows:

I(z,y;0) = max (0,A(z,y;0)) (4.11)
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(e) (f)

Figure 4.5: Contours of a fundus image along a linear scale-space: 02 = 2,4, 8, 16, 32, 64.
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The standard deviation o is our scale parameter and must be properly set.

Basically, the scale fits the average vessel thickness in the considered images. There
are multiscale algorithms which combine together the results obtained at different scales
[15]. The results are usually accurate, but at the cost of high computation times. In
this thesis, we set an “optimal” value for the parameter o by properly maximizing some
MOPs, that are able to quantitatively measure the performances of the image process-
ing algorithm.

Before performing the operations described in the next subsection, the histogram of
the grey levels of I(x,y; o) is stretched between 0 and 255.

4.1.3 Image binarization and cleaning

Histogram based binarization

In order to segment the vessels through image binarization, we must identify a proper
threshold grey level T'h. This threshold can be implicitly chosen by fixing the fraction
npp of image pixels whose intensity level will be set to 0, i.e., those pixels with grey
levels between 0 and T'h. So doing, the value of T'h turns out to be image dependent and
it is not influenced by possible scalings on the image luminosity level. The value of npp
will be directly derived through the optimization procedure described in Section 4.3.
Figure 4.7 shows an example of binary image at this processing stage.

Cleaning of spurious elements

Once the binary image is available, it can be desirable to delete spurious elements not
belonging to the vessel network. To this end, we adopted a simple algorithm, that, at
best of our knowledge, is original and is illustrated in Figure 4.8.

We fix a virtual grid made up of squares of n x n pixels and, for each square, we focus
on the perimetric pixels. If such pixels are all black, we assume that the corresponding
square contains either only background pixels or spurious elements, not connected with
the vessel structure. In both cases, the whole square is set to black, thus removing the
possible spurious elements.
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Figure 4.6: (a) I at different scales: scale o2 = 2,4, 8,16, 32, 64.
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Figure 4.7: Example of image that we get after the binarization of I(z,; o), before the
cleaning task.

This cleaning algorithm can be iterated by changing n or the virtual grid position,
so as to accurately clean the image, but at the cost of an increasing computational
effort. Figure 4.8 shows what happens if we choose to iterate the algorithm only twice,
with n = 10. In the first step, the grid completely covers the image (see a detail in
Figure 4.8(a)) and some spurious elements or not connected parts of vessels (see the
grey squares in Figure 4.8(a)) are removed, as shown in Figure 4.8(b). In the second
step, the grid is shifted by 5 pixel both horizontally and vertically (grey grid in Fig-
ure 4.8(c)) and other elements (see the grey squares in Figure 4.8(c)) are removed, as
shown in Figure 4.8(d).

As an alternative, thanks to the algorithm modularity, one may resort to other mor-
phological solutions (e.g., area opening) for the cleaning block in order to achieve a
different trade-off between speed and accuracy requirements.

Field Of View edge removal

We point out that the block described so far provide not only the vessel tree but also
the edge of the field of view (FOV), as shown in Figure 4.7(a). This edge is evidenced
by the vessel enhancement block and to remove it we must introduce a proper set of
operations. The histogram of the original image I(z,y) (see Figure 4.9(a)) exhibits an
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Figure 4.8: An example of the cleaning operation.

evident peak at very low gray levels. This peak is clearly distinct from the central part
of the histogram, representing the FOV pixels. By resorting to a simple and robust
thresholding operation, it is possible to define an M x N mask made up of white pixels
corresponding to pixels of the FOV and black pixels elsewhere. The logical multiplica-
tion of the binary image resulting from the vessel extraction algorithm with this mask
provides images similar to the one shown in Figure 4.9(b), where the edge of the FOV is
not completely removed. To accurately delete this edge, we can perform a slight erosion
of the white portion of the mask by using, as structuring element, a disk of 5-pixels
radius. This operation is not particularly sensitive as only the peripheral portion of the
vessel tree could be partially involved.

The image provided by the binarization, cleaning, and FOV removal blocks is called
I($a Yy;o, nTh)'
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0.35

Figure 4.9: (a) The normalized histogram of the green channel of a typical fundus
image. Beside this, the negative of a typical binary image obtained by resorting to the
proposed vessel extraction algorithm without doing any operation to remove the edge
of the FOV. (b) Negative of a typical binary image obtained by applying the block to
remove the edge of the FOV without the preliminary erosion of the white portion of
the mask.

4.2 Measures of performances for vessel detection

Generally speaking, a MOP is nothing more than a quality measure that addresses how
well a system works. In this Section, some MOPs are introduced to evaluate from a
quantitative point of view the results provided by the proposed algorithm.

The MOPs defined in the following are based on two images: a reference binary
image I - resulting from the manual segmentation of a fundus image I performed by
people trained by an experienced ophthalmologist - and the binary image I- resulting
from the algorithm.

We remark that, since I depends on the algorithm parameters o and nry, also each

MOP depends on ¢ and npy. For the sake of simplicity, however, in the next subsections
such a dependence will be omitted.

4.2.1 Maximum Average Accuracy (MAA)

The MAA evaluates the MOP of the vessel detection algorithm in correspondence with
the Npov pixels belonging to the FOV |73]. This MOP expresses the number of pixels
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that have been correctly classified with respect to Npoy:
> |~ I
J,keFOV

MAA=1—
Nrov

€ [0,1] (4.12)
4.2.2 K value

Preliminarily, we define the following quantities: ny, is the percentage of true positive
pixels (i.e., white pixels in I that belong to the manually extracted vessels in I ), nyp is
the percentage of false positive pixels (i.e., white pixels in I that do not belong to man-
ually extracted vessels in I), n #n is the percentage of false negative pixels (i.e., black
pixels in I that belong to manually extracted vessels in I), and ny, is the percentage
of true negative pixels (i.e., black pixels in I that do not belong to manually extracted
vessels in ). The over mentioned percentages are taken with respect to the MxN pixels
of the image to be processed.

The K value is a measure of the agreement between two observers [74]:

OA—-FA
K= 1A €[-1,1] (4.13)
where OA = (ny, + nyy,) is the observed agreement and EA = (ngy, +nyp)(nep + npn) +
(N + 1n) (Nfp + 1) is the expected agreement. The index O A expresses the percent-
age of pixels of I that are correctly classified in I , while the index FA expresses the
probability that the two observation coincide. Indeed, EA can be interpreted as the
sum between the product of the percentages of white pixels in [ (nep +nyp) and in T

(nep + nypy) and the product of the percentages of black pixels in I (nfy, + ny,) and in

I (ngp+nm).

4.2.3 Q value

This MOP is defined according to the universal image quality index defined in [75].
Such an index is “universal” in the sense that the quality measurement approach does
not depend on the images being tested, the viewing conditions or the individual ob-
servers.

We counsider two images, ¢ and r, where ¢ is the image whose quality must be evalu-
ated (in our case t = I), whereas r is the reference image (in our case r = I). To define
the index @, we preliminarily introduce a square window w(j, k) of n, X n, image
pixels. Such a window slides over the images r and t, starting from the top-left corner
and moving pixel by pixel horizontally and vertically through all the rows and columns
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of each image until the bottom-right corner is reached. The index @ € [—1,1] is defined
as follows:

r :L 4Utr(]7 )E( ) (jvk)
N[ L GGHrRGm) @GR G

where |[W] is the overall number of possible different positions of the window w over
each image, whereas £(j, k) and 7(j, k), 07 (j, k) and 02(j, k), and o4,(j, k) are the mean
values, the variances, and the covariance, respectively, of the images ¢t and r on each
window position. The explicit expressions used to calculate the mean values, the vari-
ances and the covariances of the images t and r at each window position are provided in
Appendix B. For the @ value, we set n,, = 8 to have a window large enough to obtain
reliable estimates of the mean, variance and covariance of this MOP.

4.3 Optimization

The binary images obtained by resorting to the supervised algorithm proposed in this
chapter depend on the algorithm parameters ¢ and nyy. For this reason, it is necessary
to define a procedure to choose proper values for these parameters in order to ensure a
good quality of the results. To do that, a training set made up of Nprg fundus images
(together with their reference segmentations) can be used and o and npy, can be fixed
by maximizing the quality of the results obtained by processing the images belonging
to it. In this sense the proposed algorithm turns out to be supervised.

From a practical point of view, one can choose one of the MOPs introduced in the
previous section and then either maximize the following target function

Nrg

F(O’, nTh) s Z MOPk O' nTh) (4.15)

Nrg
or minimize —F(o, nyp).

We have used the simplex search method of [76]. It is generally referred to as
uncostrained non linear optimization. This is a direct search method, based on the con-
vergence properties of the Nelder-Mead simplex method, that does not use numerical
or analytic gradients.

Such an algorithm is been implemented in the function FMINSEARCH, contained
in Matlab®. Starting from a initial point Py = (09, nrno) and using this algorithm, we
can find only local minimizers (or maximizers), but this is not a problem since working
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in a reasonable space of the parameters

(0, n7n) € [1,8] x [0.85,0.95] (4.16)

the MOPs behave regularly; they are convex functions as shown in Figure 4.10 for MAA.

Figure 4.10: MAA convex behaviour.

This is true also for the other two MOPs, K and Q.

4.4 Simulation results

To derive the image processing results presented in this Section as benchmarks for the
proposed algorithm, the 40 fundus images making up the DRIVE database have been
used. In particular, our training set contains the last 20 images (Nrg = 20) of the
database, whereas the first 20 images are a test set used to measure the performances
of the algorithm whose parameters have been tuned according to the optimization pro-
cedure.
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The cleaning operation has been iterated for many values of n. For each value of
n, the corresponding grid has been shifted on the image by positioning its upper-left
vertex in all the pixels (j,k) for j =1,...,n—1and k = 1,...,n — 1. The sequence
of values assigned to n is {3,4,8,16,4,8,16} and has been chosen heuristically after
many trials. We need to repeat twice some values of n in the sequence, since a single
application would clean only one element in pairs of close spurious patterns.

4.4.1 Training phase

During the training phase, for each MOP defined in the previous section, the opti-
mal values of the algorithm parameters ¢ and nyp have been obtained by maximizing
F(o,n7y). These values are given in the first and second columns of Table I, respec-
tively. The MOPs values corresponding to the best and worst cases are shown in the
third and fourth columns, respectively. These values were obtained by processing the
images of the training set with the optimal values of the algorithm parameters. Fig-
ure 4.11 shows the corresponding image-processing results, i.e., the best (first row) and
worst (second row) vessel extraction results for the training set images in terms of MAA
(a,d), K (b,e), and Q (c,f). The number of original images in the database is also given.

Table I

Table 4.1: Values of o, nyy, best and worst cases after optimization, for each MOP

MOP o nTh Best case | Worst case

MAA | 2.0253 | 0.90946 0.9541 0.9067
K 2.1505 | 0.89261 0.7610 0.5958
Q 2.0882 | 0.88603 0.7295 0.5406

Once the optimal values of o and ngp have been obtained, the algorithm can be
applied to other images to test its performances.

4.4.2 Test phase

The first two columns of Table II contain the mean values and the standard deviations,
respectively, of the MOPs obtained by processing the images of the test set after fix-
ing the parameters o and npp, at their optimal values (see Table I). The values of the
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(d):34 (e):23 (f):23

Figure 4.11: Best (first row) and worst (second row) vessel extraction results for the
training set images with respect to MAA (a,d), K (b,e), and Q (c,f). The database
numbers of the original images are shown next to the labels.

MOPs corresponding to the best (third column) and worst (fourth column) cases are
also shown. The fifth and sixth columns contain the mean values of the True Positive
Fraction (for each image, the percentage of vessel pixels actually classified as vessel
pixels) or TPF and of the False Positive Fraction (for each image, the percentage of
non-vessel pixels actually classified as vessel pixels) or FPF, respectively, for the 20
images of the test set. In Figure 4.12, the segmented images corresponding to the
best (first row) and worst (second row) cases are provided for the test set in terms of
MAA (a,d), K (b,e), and Q (c,f). The number of original images in the database is given.

4.4.3 Comparison with other methods

By resorting to the first two MOPs (M AA and K), it is possible to compare the per-
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Table II

Table 4.2: Mean values, standard deviations, best and worst cases, mean TPF and FPF
for the MOPs with ¢ and npyp set to their optimal values.

MOP Mean | Standard | Best case | Worst case Mean | Mean
deviation TPF FPF

MAA | 0.94183 | 0.00822 0.9587 0.9275 0.6377 | 0.0091
K 0.72860 | 0.03452 0.8069 0.6642 0.7052 | 0.0162
Q 0.69123 | 0.03933 0.7735 0.6247 0.7246 | 0.0193

Figure 4.12: Best (first row) and worst (second row) vessel extraction results for the
test set images with respect to MAA (a,d), K (b,e), and Q (c,f). The database numbers
of the original images are shown next to the labels.

formances of the proposed algorithm with the ones of other algorithms that can be
found in the literature. The first two columns of Table III contain the mean values of
both M AA and K, obtained by a second independent manual segmentation available
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for the first 20 images of the DRIVE database (first row) and by processing the test set
images by resorting to different methods |73, 14]: primitive-based method [14], pixel
classification method [73], mathematical morphology and curve estimation method [77],
verification-based local thresholding method [78], scale-space analysis and region grow-
ing approach [79], matched filter method [20]. Among these algorithms, only the pixel
classification and primitive-based methods are supervised.

Table 111

Table 4.3: Comparisons with other methods proposed in the literature

Method MAA K TPF | FPF
Second manual segmentation | 0.9473 | 0.7589 | 0.776 | 0.0275
Primitive-based method 0.9441 | 0.7345 | 0.697 | 0.019
Our algorithm 0.9419 | 0.7286 | 0.7246 | 0.019
Pixel classification 0.9416 | 0.7145
Mathematical morphology 0.9377 | 0.6971
Local thresholding 0.9212 | 0.6399
Scale-space and region growing | 0.9181 | 0.6389 | 0.7246 | 0.0345
Matched filter 0.8773 | 0.3357
All background 0.8727 0

The last two columns of Table III contain the mean values of TPF and FPF, re-
spectively, for some of the considered methods. In particular, for our method, we have
reported the mean TPF and FPF for the MOP @, which provides the best results (see
Table II).

Comparisons of the results summarized in Tables II and III evidence that the per-
formances of the proposed algorithm are close to the ones of well-known algorithms
proposed in the literature. On the whole, the results confirm that supervised methods
represent a reliable way to get the best results. We remark that in this case the al-
gorithm is much less computationally expensive than the best algorithm in Table III.
Using a Matlab® implementation and not a faster C++ one, running on a Intel®
Celeron® CPU 2.40GHz with 192Mb RAM, the initial optimization phase of our algo-
rithm can take several minutes, but after this, once the “optimal” values for parameters
o and npyp are fixed, each segmentation of a fundus image does not require more than
six seconds, for images of size 564x584 pixels. The Primitive-based method algorithm,
instead, requires a processing time of several minutes, in similar conditions [14]. We
remark that the modular structure of the proposed algorithm may allow one a further
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speed up of the computations if combined with a pipeline architecture, i.e., if the sub-
blocks can process in parallel different images.

4.4.4 MOPs influence on the results

By using the @ value as measure of performance, we show how different features of
the results can be highlighted. In particular, with this MOP we can detect a higher
number of small vessels, related to higher values of the mean TPF for this MOP (see
Table II). The price to pay is a larger number of wrongly classified pixels, related to
higher values of the mean FPF (see Table II). Anyway, we remark that these new false
positives are confined to regions close to image elements denoting the presence of some
pathologies (e.g., drusen, exudates, age-related macular degeneration) and then they
affect the results only for images containing this kind of elements.

For istance Figure 4.13 shows:

1. vessel segmentation of an image with no pathologies, for o and np, obtained by
training with (a) MAA and (b) Q;

2. vessel segmentation of an image with signs of mild early diabetic retinopathy, for
o and npyp, from the training with MAA (c) and with Q (d).

The number of original images in the database is given.

4.5 Remarks

A supervised algorithm for vessel segmentation in red-free images of the human retina
has been proposed. Two parameters have been identified whose choice seems to be
particularly critical. The “optimal” values for these parameters are obtained by opti-
mizing proper target functions, defined on the basis of some MOPs. We referred to
three examples of MOPs, but different choices can fit different specific requirements.
We point out that nowadays there is not, in the literature, a common opinion about
a universal MOP able to evaluate adequately the results of most of the algorithms.
Moreover, different applications may need a different attention on specific aspects of
the result: as an example, one may be interested in having a higher accuracy on small
vessels or in determining the vessels’ widths or in finding at best the ramifications of
the vessels’ tree. Several applications do not need either all the cited features nor that
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Figure 4.13: (a) Vessel segmentation of an image with no pathologies, for o and npy,
obtained from the training with MAA. (b) Result for o and ngy, from the training with
Q. (c) Vessel segmentation of an image with signs of mild early diabetic retinopathy,
for o and npy, from the training with MAA. (d) Result from the same image but for
o and npp from the training with Q. The database numbers of the original images are
shown next to the labels.

these features are detected all at the same time. The proposed algorithm is enough
flexible to be customized for different applications, simply by changing the reference
MOP.

We have experimentally verified that choosing the threshold Th implicitly, by fixing
the fraction nr, of image pixels whose intensity level is set to 0, provides better results
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than choosing T'h directly. For instance, in the latter case, we obtain a mean value
of 0.94015 and a standard deviation of 0.00898 for MAA, which is a worst result if
compared with the first row in Table II.

With respect to other Hessian-based methods (e.g., [15]), where two or more thresh-
olds are required, our choice of defining the algorithm only for red-free images (setting
to zero the eigenvalue A(x,y) with maximum absolute value in correspondence of nega-
tive curvature regions) allowed us to obtain satisfactory results with only one threshold.
Indeed, in this case the only high-curvature structures are the vessels. We point out
that the same algorithm can work with the negative of fluorescein images.

The choice of a single “optimal” scale factor o, instead of a multi-scale approach,
yields similar results, and reduces considerably the computational effort. As a matter
of fact, by using the 20 images of the test set, with a multi-scale algorithm we obtained
the best average M AA = 0.9423, with scales within the interval of 1 < s < 10 pixels
in steps of 1 pixel and with optimization only on npp. With our algorithm, the best
average MAA was 0.94183 (see Table II). A further visual inspection of the results
reveals that there are not appreciable differences in the detection of small vessels. Only
slight differences in the width of vessels can be appreciated.

We have already remarked that the cleaning procedure deletes all the spurious el-
ements. It may happen that some of these spurious elements belong to thin vessels,
which remain therefore unconnected to the main tree. Specific measures allowed us to
state that this is a marginal behavior. As compared with the complete algorithm, a
version not containing the cleaning procedure causes an increase of 30% in the FPF and
of only 4% in the TPF. This confirms that most of unconnected spurious little clusters
do not belong to the vessel tree. These measures are average values for the 20 images
of the test set and have been obtained by ¢ and npy, fixed after the training with MAA
(see Table I).

Finally, we remark that the quality of the results may be further improved by adding
other processing blocks. For instance, a procedure for removing pixels belonging to the
edge of the optic disk could be introduced. Another improvement for images showing
some pathology (e.g., drusen, exudates, and others) may be obtained by a block for
the elimination of light objects before segmenting the vessels in pathological images.
As a matter of fact, Figure 4.13 points out that light objects in pathological images
usually have a bad influence on results, mainly when the objects are near or touch the
vascular network. The presence of a block that eliminates these objects before vessel
segmentation should overcome this drawback, thus having a positive influence on the
calculation of ¢ and npy,.



Chapter 5

Improving vessel segmentation
using non-linear scale space

In this chapter we introduce a modified version of the algorithm described in the pre-
vious chapter. Our aim is to improve the segmentation results. Furthermore, we use it
for the segmentation of noisy fundus retina images. Denoising (or image restoration)
is, with segmentation, one of the most basic image processing problem. It constitutes
a significant preliminary step in several machine vision tasks, such as object detection
and recognition. It is also one of the mathematically most intriguing problems in vision.

A major concern in designing image denoising models is to preserve important image
features while removing noise. An important image feature is given by edges: exactly
to face this kind of problems, the Total Variation image restoration models were first
introduced by Rudin, Osher and Fatemi in their pioneering work [80]. The variational
form of this models was designed with the explicit goal of preserving sharp disconti-
nuities (edges) in images, while removing noise and other undesired fine-scale details.
The functional is convex and it is one of the simplest variational approaches having this
most desirable property.

We aim to achieve the vessel enhancement task on the basis of the Total Variation
regularization. In the previous chapter we used the linear multiscale theory. Now, the
second derivatives and then the curvatures of the ridges are estimated on the basis of
the Total Variation non-linear scale-space. After this step, we apply the same blocks
introduced in Chapter 4, to achieve image binarization and cleaning. The two param-
eters of interest (scale and threshold) are fixed by properly maximizing only the MAA
measure of performance.

67
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5.1 Total variation regularization

TVM (Total Variation Minimization using the variational model or Total Variation Mo-
tion considering the differential form) was originally introduced in image processing by
Rudin, Osher and Fatemi in [80] and then it has been used in many image processing
applications. TVM is one of the earliest and best known examples of edge preserving
regularization. It was designed with the explicit goal of preserving sharp discontinuities
(edges) in images while removing unwanted fine scale details and among them the noise,
if present in the image. Figure 5.1 shows an example of Total Variation non-linear scale
space. In Figure 5.2 we can observe the edges of the image: they are preserved better
than in the linear case.

The Total Variation functional, associated to energies, has appeared and has been
previously studied in many different areas of pure and applied mathematics. For in-
stance, the notion of Total Variation of a function appeared in the theory of minimal
surfaces. In applied mathematics, Total Variation based models and analysis appear
in more classical applications such as elasticity and fluid dynamics. Due to [80], this
notion became central also in image processing.

At first, we introduce the variational form:

E(I(e.yir) = /Q (I~ o) + 7 |[VI(z,y)| dedy

= [ (He) (M) oy

The regularization term, for smooth images, is equivalent to the L' norm of the first
derivatives. In other words, it corresponds to the integration on the domain €2 of the
gradient norm. As the gradient evaluated in a given point is a measure of the variation
of the function in such point, the integration over the entire domain must result in the
total variation (hence the name).

It should be noticed that TVM is non-linear, i.e., we can’t define an operator T}
that, convoluted with the function Iy, returns the total variation result.

We want now to underline the mathematical properties that make this multiscale

analysis edge preserving. First of all, we deduce the corresponding divergence form
from the variational definition. According to Equation (3.13), we define

O(s) = s = (| VI])) = [IVI] (5.2)
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(e) (f)
Figure 5.1: Example of TV scale-space: t = 5,10, 50, 100, 150, 200.



70

5. Improving vessel segmentation using non-linear scale space

(e) (f)
Figure 5.2: Edge of a fundus image along a TV scale-space: t = 5, 10, 50, 100, 150, 200.
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Then, having in mind Equation (3.26), we evaluate:

1 @ 1 1
g(IvIl) = 5 =5
2| v 2(vI|
1 1
) 2 2 (53)
ol (x, ol (x,
(25" (252)
and then we are able to express the divergence form:
ol 1 VI
— ==V (== 54
=" () o4

with Iy as initial condition.

Equation (5.4) represents an intermediate result. Now we derive the oriented 1D
Laplacians form. This is the concluding form that allows us to understand the nature
of the diffusion associated with the Total Variation:

\avi

1. For z = 1
VI

1
we have CL=9= 37

2. For v = ¥h we have ¢ = g + V1| ¢’ = § gy + 5 V] (—ﬁ) —0

Finally, we reach the result:

or 1 1

— =] 5.5

ot 2||vI|| (55)
This result tells us that the Total Variation Motion describes a diffusion pro-
cess that follows only the direction orthogonal to the gradient (¢; # 0, co = 0).

No diffusion involves the local edges of the image, so no blurring of them can be
observed during the diffusion process. In digital images we can have, actually, little
diffusion in the direction of the edges due to incorrect estimates of the edge direction,
but this effect remains anyway limited thus preserving the main features of the diffusion
process.



72

5. Improving vessel segmentation using non-linear scale space

5.2 The staircasing problem

The image restoration model, based on the Total Variation, tends to yield piecewise
constant images, i.e., “blocky” images. In other words the TVM method well preserves
edges but exhibits the sometimes undesiderable staircase effect, namely the transforma-
tion of smooth regions (ramps) into piecewise constant regions (stairs). This behaviour
can be clearly seen in a 1D example, like in Figure 5.3, where the regularization of a
noisy signal is shown.

This feature is certainly useful for many applications, but it can be a serious draw-
back for many others. This is true for our case, since the staircase effect reduces the
ridgeness of the vessels.

Figure 5.3: Left: original 1D signals. Center: noisy 1D signals, SN R ~ 5. Right: result
of TV restoration.

This behaviour is mainly due to huge diffusion near critical points where the gradient
magnitude of the image is zero, i.e., ||[VI|| = 0. We can also notice that Equation (5.4)

is not defined at these points, due to the presence of the term 1/|VI|.

To solve this problem it is common in the literature [81] to introduce a slightly
perturbed norm

VeIl = IVII* + e
N R R

with € € R. At the end of this section we will show the effects of this choice on the
behaviour of the diffusion process.
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5.2.1 Variational and differential form using the perturbed norm

Now, we want to derive the divergence and the oriented 1D Laplacians form from the
variational definition of our problem (TVM with the pertubed norm). We start from the
general definition of a variational problem involving the perturbed norm, then we get
the two differential representations from this (divergence form and oriented 1D Lapla-
cians form). In a second time we obtain the particular results for the TVM case. At
the end we will be able to directly understand how the introduction of the perturbed
norm affects the diffusion behaviour.

First of all, it can be easily noticed that every function of the perturbed norm is
implicity a function of the gradient magnitude

POV = £ (x/HVIHQ +e2) — 3. (|VI]) (5.7)

This simple consideration allows us to reuse the results of Chapters 3. For the sake of
convenience, we introduce the following notations:

6 = VI

b = ||VI|| = \/|IVI|? + ¢ (5.8)

Then according to what reported above we have

de =V 02+ € (5.9)

lim 5 = & (5.10)

Before going on, it is useful to introduce the following results:

1.
od,  Of (5.) 6.
! —
c(9) o5 095 06
/g NZ.Y 2) — /1 20
f@d( 5+6)_ 2./02 + 2

Vel ||
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2.
" . 0 , 0 of' o (46
ec0) = %<f5_> 5 5. f%(a‘)
I a< >
= oo T

38

(5 (5 56 E
— f//5_€5_5+f/ 562

62§52 82
= f 52+f/ 53
VI| Iver|® — | vIj®
=/ = f" H + f! 5.12
IV Ok (5.12)

Now, we have all the elements to define completely the mathematical framework for
a general problem involving the perturbed norm. We define the variational form of this
problem as follows

/Q (I — I0)* + f(|VI|) durdy =

/ (I = I)? + 7.(5) dady (5.13)
Q

from this and having in mind Equation (3.26), we can describe the differential problem
associated to this, using a PDE in the divergence form:

oI !
o v<||wuv>
v 1 )
v<f’ VI
2T

or 7

and then derive the oriented 1D Laplacians form. We have to consider a PDE of the kind

oI

8t Cllzz +(32[m, (515)
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for which we calculate the values of the two diffusion coefficients that weigh, respec-
tively, the diffusion in the directions orthogonal (z) and parallel (v) to the gradient:

1 = %é = ﬁ (5.16)
0 = ®= f”Hvae;';g +f’”veﬂ:’;;““3v s (5.17)
5.2.2 Variational and differential form for TVM case
For the specific TVM case we have to consider:
F6) = 2(8) =V =5
f =1
=0 (5.18)

Using these results we calculate the exact expression of TVM in all the three represen-
tations:

VARIATIONAL FORM

/(I — Ip)? + 7||V°I|| dady (5.19)
Q
DIVERGENCE FORM

oI VI

9l _ 2

5= (o) >20)
1-D LAPLACIANS FORM

1
c1 =

Vel ||
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VeI — v
- TP (5.21)

The result for the Laplacian form is interesting since it shows that, introducing a per-
tubation in the norm ||VI||, we have consequently the presence of a component of the
diffusion also in the direction parallel to the gradient (co # 0). For ¢ — 0 we come
back to the TVM as described in Section 5.1 (staircase problem). Then, for increasing
values of €, the amount of diffusion across the edges increases gradually and we can
easily observe a larger amount of blur in the regularized image, up to the complete loss
of the edge preserving properties typical of a TVM scheme.

The choice of a useful value of e should represent a trade-off between these two
opposite behaviours, but we will show that this seems not to be a critical choice.

5.3 The improved algorithm

At this point we want to test the behaviour of the TVM (and its edge preserving
properties) in a segmentation application. To do this, we work with a modified version
of the algorithm introduced in the previous chapter. It changes since now we use
the nonlinear scale-space I(x,y,t) due to TVM, instead of a linear scale-space. The
algorithm can be summarized as follows:

1. Contrast enhancement pre-processing
2. TVM diffusion using Equation (5.20); we obtain the non-linear scale-space I(z,y, t)

3. Evaluation of the second derivatives and then the Hessian matrix and its eigenval-
ues across the scales; we obtain the function I(x,y,t), equivalent to the function
intoduced by Equation (4.11)

4. Histogram-based binarization
5. Cleaning

6. FOV removal

We remark that for the TVM the scale parameter is the time ¢ required by the
diffusion process: the higher time, the higher the blurring we can observe into the ar-
eas of the image bounded by edges. Once obtained the image at a certain scale ¢ we
evaluate the spatial derivatives by the convolution of our image with the derivatives
of a Gaussian with standard deviation 4., = 0.5 and so the Hessian matrix and its
eigenvalues. We choose 4., = 0.5 to have a robust estimation of the second derivatives
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without perturbing too much, with a further linear multiscale analysis, the results from
TVM.

The same blocks introduced in Chapter 4, for image binarization, cleaning and FOV
removal are then applied to obtain the segmentation of the vessel tree of the fundus
retina images. The “optimal” scale and histogram based threshold are still chosen by
maximazing a MOP. In this chapter we only deal with MAA measure (for further detail,
see Section 4.4).

5.4 Simulation results

In this section we show the results obtained by using the modified segmentation al-
gorithm. We want only to offer an overview on significant performances, to point out
manifest improvements we achieve with this new version of the algorithm. For the TVM
we have to take into account also the value of the perturbation € used to avoid or reduce
the staircase effect. We use the results presented in this section also to investigate and
discuss how they are influenced by this new parameter in the multiscale analysis.

We anticipate that this parameter seems to be not critical. This topic has not been
faced in this thesis, but “optimal” values of € could be automatically calculated starting
from geometrical measures related to the mean value of the vessel edges in the image
to be regularized. Starting from the variational model of the Total Variation, it can be
shown that the value of the perturbation of the norm discriminates between “low edges”
and “high edges” |80]. Low edges are assimilated to the noise and blurred like this. For
high edges we can observe minimum diffusion across the edge, similar to the case of the
Total Variation without perturbed gradient norm.

We report the results we obtained by considering four different values of the per-
turbation €. First of all, regardless the value of €, we obtain close “optimal” values for ¢

and nyy, after the training phase as described in Section 4.4. By maximazing the MAA
measure of performance, we have:

e= 10— (t = 20.364; ny, = 0.9084 )
e =100 — (t = 21.406; nyy = 0.9096 )
e =150 — (t = 21.058; ngy = 0.9087)
e =200 — (t= 20.524; nyp, = 0.9025 )

Once we have obtained the optimal values of ¢t and nrp, we apply the algorithm to
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the first 20 images of the DRIVE database to test its perfomance.

The first two columns of Table IV contain the mean values and the standard devia-
tions of the MAA obtained by processing the images of the test set. The parameters ¢
and nry, are fixed at their optimal values for each case, considering ¢ = 10,100, 150, 200.
The values of MAA corresponding to the best (third column) and worst (fourth column)
cases are also shown. The fifth and sixth columns contain the mean values of TPF and
FPF, respectively, for the 20 images of the test set. In Figure 5.4, the segmented images
corresponding to the best (first row) and worst (second row) cases are provided for the
test set, for e = 150 (corresponding to the best result) and for e = 100 and e = 200.
The number of original images in the database is given.

Table IV

Table 5.1: Mean values, standard deviations, best and worst cases, mean TPF and FPF
for e = 10,100, 150,200 with ¢t and nrj, set to their optimal values for M AA.

MAA Mean | Standard | Best case | Worst case Mean Mean
deviation TPF FPF
with e = 10 | 0.94209 | 0.0074597 | 0.96104 0.92992 0.65478 | 0.010646
with € = 100 | 0.94327 | 0.0078334 | 0.96253 0.93009 0.65362 | 0.0095701
with € = 150 | 0.94329 | 0.0074413 | 0.96149 0.9324 0.64893 | 0.0091484
with € = 200 | 0.94320 | 0.0076326 | 0.96163 0.9306 0.64701 | 0.0094993

For the four considered values of €, the results in Table IV suggest the presence of a
(sub)optimal value e = 150 which gives us the best M AA = 0.94329. Compared with
the M AA = 0.94183, obtained with a linear scale space, we have clearly better results,
even with a lower variance (0.00746 instead of 0.00822 in the previous case).

Moreover, for ¢ = 100 and ¢ = 200 the results seem to not vary too much: on a
visual inspection the results are almost identical. The MAA corresponding to these two
values are very close to the one for e = 150. We point out that the introduction of the
perturbation in the gradient norm is not useless: for ¢ = 10 we can observe a lower
MAA due to a higher influence of the staircase effect, however still having better results
than the linear case.
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Figure 5.4: Best (first row) and worst (second row) vessel extraction results for the test
set in terms of MAA for e = 100 (a,d), ¢ = 150 (b,e), ¢ = 200 (c,f). The database
numbers of the original images are shown next to the labels.

5.5 Simulation results with noisy images

In many real applications, in the course of acquiring, transmitting, or processing, digital
images are perturbed by noise. The noise is usually described by its probabilistic model,
e.g., gaussian noise is characterized by two moments (mean and standard deviation of
a gaussian distribution of density of probability).

Application-dependent, a degradation often yields a resulting signal /image observa-
tion model, and the most commonly used is the additive one:

In(z,y) = I(z,y) + n(z,y) (5.22)

where the observed image In includes the original signal I and the independent and
identically distributed (i.i.d) noise process 7.
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The Total Variation Motion is designed to work with noisy images. We have decided
to test this multiscale analysis using noisy fundus retina images of the DRIVE database,
corrupted by Additive White Gaussian Noise (AWGN). This is a gaussian noise with
zero mean characterized by its standard deviation g,.;se. It is modeled by an additive
scheme like the one of Equation (5.22).

In Figure 5.5 we can see two examples of noisy fundus retina images.

(a) (b) ()

Figure 5.5: (a) Original image. (b) Noisy image, opeise = 5. (c) Noisy image, pnpise =
10.

We consider two cases: Oppise = 9 and onpise = 10. We compare the results we
obtain with the TVM based algorithm with the results we would have by using the
algorithm based on a linear multiscale analysis. In any case, we refer to the mean MAA
value for the 20 images of the test set. The optimal scales and thresholds are fixed af-
ter a training phase on the last 20 images of the database, corrupted with AWGN noise.

Tables V and VI show the results for the two considered standard deviations ,;se,
for different values of the perturbation e of the gradient norm.

Also in this case, among the values of € chosen to study the behaviour of our algo-
rithm, the value e = 150 gives the best result. Besides, for e = 100 and € = 200, the
MAA don’t vary too much. In Figures 5.6 and 5.7 the segmented images corresponding
to the best (first row) and worst (second row) cases are provided for the test set, for
e = 100, 150, 200 and considering, respectively, the two cases oppise = D and gppise = 10.
The number of original images in the database is given.
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Table V

Table 5.2: Noisy image results for TVM scale-space based segmentation (noise AWGN
with oy0ise = 5): mean values, standard deviations, best and worst cases, mean TPF
and FPF for the MAA with ¢ and npy, set to their optimal values.

MAA Mean | Standard | Best case | Worst case Mean Mean

deviation TPF FPF

with e = 10 | 0.93818 | 0.007082 | 0.09539 0.92420 0.64813 | 0.0128

with e =100 | 0.94098 | 0.007169 | 0.95535 0.92773 0.65730 | 0.0115

with € = 150 | 0.94147 | 0.006826 | 0.95646 0.92867 0.65939 | 0.0113

with e =200 | 0.94112 | 0.006774 | 0.95518 0.92852 0.65247 | 0.0109
Table VI

Table 5.3: Noisy image results for TVM scale-space based segmentation (noise AWGN
with 0pise = 10): Mean values, standard deviations, best and worst cases, mean TPF
and FPF for the MAA with ¢ and npy, set to their optimal values.

MAA Mean | Standard | Best case | Worst case Mean | Mean
deviation TPF FPF

with e = 10 | 0.93416 | 0.00695 0.94903 0.92063 0.6285 | 0.0139
with e = 100 | 0.93808 | 0.00731 0.95227 0.92486 0.6234 | 0.0115
with e = 150 | 0.93822 | 0.00737 0.95448 0.92282 0.6314 | 0.0104
with e =200 | 0.93810 | 0.00767 0.95385 0.92209 0.6218 | 0.0102

To better understand the quality of the results, we present the MAA we would have
by using the linear multiscale based segmentation. In Table VII the measures of the
MAA using a linear scale-space are reported for the same values of the noise standard
deviation as in Tables V and VI.

From the comparison of the results reported in Table VII with the ones of Tables V
and VI, we can notice that the new algorithm works well also with noisy images, still
providing better results than the linear case.
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Figure 5.6: Best (first row) and worst (second row) vessel extraction results for the
test set in terms of MAA for ¢ = 100 (a,d), e = 150 (b,e), € = 200 (c,f), considering
Onoise = 10. The database numbers of the original images are shown next to the labels.

Table VII

Table 5.4: Noisy image results for linear scale-space based segmentation (noise AWGN
with 0peise = 5 and oppise = 10): Mean values, standard deviations, best and worst
cases, mean TPF and FPF for the MAA with ¢ and nyy, set to their optimal values.

MAA Mean | Standard | Best case | Worst case Mean | Mean
deviation TPF FPF

with opnoise = 5 | 0.93821 | 0.00786 0.95601 0.9252 0.6340 | 0.0118
with 00ise = 10 | 0.93657 | 0.00778 0.95192 0.9218 0.5992 | 0.0107
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Figure 5.7: Best (first row) and worst (second row) vessel extraction results for the
test set in terms of MAA for ¢ = 100 (a,d), e = 150 (b,e), € = 200 (c,f), considering
Onoise = 10. The database numbers of the original images are shown next to the labels.
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Chapter 6

Conclusion

In this thesis we introduced a novel algorithm for the segmentation of the vessels in
fundus retina images. The algorithm has a modular structure and is made up of two
fundamental blocks. The first is devoted to vessel enhancement involving multiscale the-
ory and scale-space. Two cases are considered: linear scale-space and edge-preserving
non-linear scale-space based on Total Variation Motion. The second block provides a
binary image by resorting both to a thresholding procedure and cleaning operations.

The multiscale analysis framework is discussed in detail. At first we introduced the
multiscale analysis referred to an operator T3 applied to an image I(z,y). This was the
first description of a multiscale analysis presented in the literature. Alvarez et al in [47]
gave an axiomatic description of the multiscale properties and proved the relationship
between operator-based multiscale analysis and PDEs. We used the Eulero-Lagrange
equations to link the diffusion PDE in the divergence form with the variational method.
Then we derived the oriented 1D Laplacians form and we proved this result.

We used our framework to prove or to deduce with a coherent formulation several
properties of the multiscale analysis (i.e. isotropic regularization, diffusion next to the
edges of the image, uniqueness of the solution). For Total Variation Motion, we gave a
novel characterization of the effects related to the use of a perturbed norm. We proved
the mathematical framework that describes the diffusion behaviour in proximity of the
edges.

To achieve the vessel enhancement, we located the ridges in the image by evaluating
the eigenvalues of the Hessian matrix. The eigenvalues give us point to point infor-
mations about the curvature along the principal direction, i.e. the direction on which
we measure the maximum convexity or concavity. This allows us to save computation
time with respect to other methods. As a matter of fact, for example, the matched
filter approach or the morphological techniques need kernels or structuring elements at
different orientations, and repeat several times the same operations for each direction.
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6. Conclusion

The optimal values of the “scale” and “threshold” parameters of the algorithm were
found out by maximizing proper measures of performance (MOPs). We introduced
some MOPs to test the quality of our results and we compared them with other meth-
ods presented in the literature. The nonlinear algorithm outperforms the linear al-
gorithm, working with both uncorrupted and noisy retinal images. We showed that
for uncorrupted images the performances of the proposed algorithms are close to the
ones of well-known algorithm presented in the literature. At best of our knowledge, no
methods have been applied to noisy DRIVE database images until now, so no terms of
comparison are available.

We discussed the influence that the MOPs have on the results. A research topic
could be the development of further MOPs able to highlight different segmentation ap-
plications (i.e., accuracy on small vessels, vessels’ widths, ramification of the vessels’
tree).

The algorithm is modular. The quality of the results may be improved by adding
other processing blocks. For istance, a procedure for removing pixels belonging to the
edge of the optic disk could be introduced. Another improvement for image showing
some pathology (e.g., drusen, exundates, and others) may be obtained by a block for
the elimination of light objects before segmenting the vessels in pathological images.
The presence of a block that eliminates these objects before vessel segmentation should
overcome this drawback.

The modified algorithm based on the non-linear scale-space involves a new param-
eter: the perturbation of the gradient norm e. We showed that this is not a critical
parameter, unlike the scale and the threshold. Specific studies, not faced in this thesis,
can be developed to identify an analytical relationship beetween the geometrical char-
acteristics of the image and an optimal value of this parameter. Once an optimal value
for this is identified, the results are robust with respect to limited changes of this value.

Further studies can be developed to analyze in detail the quality of the results,
respect to increasing standard deviations of the gaussian noise and with salt and pepper
noise or poissonian noise. It can be measured the different rate of the degradation of
the results between the two cases, linear and non-linear.



Appendix A

From divergence form to oriented
1D Laplacians form

We have have said that a PDE in the divergence form

iy <”§—;Hvz) =V (g (IVI]) V])

can be rewrittten using the oriented 1D Laplacians form
It = 11, + colyy
provided that:

1. Cl1 =g

2. coi=g+|VI|g

V.1
3. z:= V;ﬂ
— VI
4. v:= INZdl
PROOF
We rename 0 := || VI|| = /12 + I2. We have:
oI
o - 5)VI) =
= V)V
= g(6) VI +Vg(d)VI=
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= gV + g 1, + g1, (A.3)
with
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By replacing (A.4) in (A.3), we obtain:
o1 2 g
% gVl + 5 (Lo (o lpo + Tylye) + Iy (Lo Loy + Iylyy))
= g(Luw + Iy) + %/ (I2Lpw + Lpdyloy + Ldylys + I71,,) (A.5)

We assume that our images are regular enough, so that I, = I, ;.

By multiplying and dividing the right hand side (r.h.s.) of equation (A.5) by the
same quantity d, we obtain:

oI g g’

/

5
= S (B4 L) Uao+ L) + S5 (Blow+ 2Ly Loy + IT1,)  (A6)

then, by adding and subtracting the same quantity to the first term of the r.h.s., we have:

ol g

o = 53 Liles ¥ Ll + Bl + e + 211, Ly — 211, Iy

/

5
+ 55 (o + 201y Ly + 11,
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It can be easily verified that

(Lo + 2Ly ey + I1y) = [ L 1 ] [ o } [ I }
yx vy )
= (VITH)VI (A-8)
[xx [x _I
(Islxx - QInyImy +I§Iyy) = |: _Iy Ix j| |: Iyw Iyi :| |: Iwy :|
= (VJ__[TH) Vil (A.9)
and
IV I = |V (A.10)

Finally, we obtain:

g+dg

o= SOy v+ 2

52
= o (Jm?) gom) + 00 () o] a0

This is the end of the proof, since the two terms inside the square parentheses corre-
spond to the definition of the second directional derivatives in the directions orthogonal
and parallel to, respectively, the image gradient.

[(VIT) V.1
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Appendix B

Explicit expressions used to
calculate the QQ value

In this Appendix we report the explicit expressions used to calculate the mean values,
the variances and the covariances of the images ¢ and r at each window position:

f(j,k)Zniz > tpa) (B.1)
Y p.aew(jk)

AR =t S (Hpa) ~ G R)? (B2)
v p,g€w(jk)

RGR) = S ()~ HGR) rpa) —FGR) (B3
v p.g€w(j.k)

Equations Equation (B.1) and Equation (B.2) apply, mutatis mutandis, also to r.
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B. Explicit expressions used to calculate the Q value
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