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AbstratAutomated segmentation of the vasolature in retinal images is important in the de-tetion of a number of eye diseases. Some diseases, e.g retinopathy of prematurity,a�et the morphology of the vessel tree itself. In other ases, e.g. pathologies likemiroaneurysms, the performane of automati detetion methods may be improvedif regions ontaining vasolature an be exluded from the analysis. Another impor-tant appliation of automati retinal vessel segmentation is in the registration of retinalimages of the same patient taken at di�erent times. Therefore the automati vessel seg-mentation forms an essential omponent of any automated eye-disease sreening system.In this thesis an algorithm for the segmentation of the vessels in the images of thefundus of the human retina is developed. In the �rst hapter we introdue some nota-tions about the eye, the imaging tehnology and the arhives of images. In the seondhapter we show the state of art of the tehniques proposed in the literature about vesselextration. Sine retinal vessels have a range of di�erent sizes, it is a natural hoie theuse of an algorithm based on the multisale analysis, so in the third hapter we deal indetail with the multisale paradigm, and we disuss a mathematial framework to faethis kind of problems using a di�erential and variational approah. In the fourth hapterwe talk about the algorithm developed to ahieve the segmentation of the retinal ves-sels. The algorithm is modular and is made up of two fundamental bloks. The formeris devoted to vessel enhanement, using a linear multisale analysis for ridge detetion,the latter provides a binary image by resorting to both a thresholding proedure andleaning operations. The optimal values of two algorithm parameters are found out bymaximizing proper measures of performanes able to evaluate from a quantitative pointof view the results provided by the proposed algorithm. The hoie of the measure ofperformane allows one to tailor the solution to the spei� image features to be empha-sized. Some simulation results are presented and the performanes of the algorithm areompared with those of other methods proposed in the literature. In the �fth hapterwe show the result improvements obtained using a nonlinear multisale analysis (TotalVariation Motion) instead of a linear tehnique.
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Chapter 1IntrodutionAutomated segmentation of the vasolature in retinal images is important in the dete-tion of a number of eye diseases. Some diseases, e.g retinopathy of prematurity, a�etthe morphology of the vessel tree itself. In other ases, e.g. pathologies like miroa-neurysms, the performane of automati detetion methods may be improved if regionsontaining vasolature an be exluded from the analysis. Another important applia-tion of automati retinal vessel segmentation is the registration of retinal images of thesame patient taken at di�erent times. The registered images are useful for automatiallymonitoring the progression of ertain diseases. Finally, the position, size and shape ofthe vasolature provides information whih an be used to loate the opti disk and thefovea. Therefore the automati vessel segmentation onstitutes an essential omponentof any automated eye-disease sreening system.1.1 Anatomy of the eyeIn Figure 1.1 we an see a transverse setion of the left human eyeball: all the struturesof main interest are labelled.The outer layer of the eyeball is alled �brous tuni and it is omposed of the sleraand ornea: the former provides shape and protets inner parts, the latter admits andrefrats light. The middle oat of the eye is named vasular tuni and omprises: thehoroid, whih provides blood supply and absorbs sattered light; the iliar body, whihserets aqueous humor and alters the shape of lens for near or far vision; the iris, whihregulates the amount of light that enters the eyeball.The inner layer is alled nervous tuni or retina: light enters the pupil (theaperture in the iris), is foused and inverted by the ornea and lens, and is projetedonto the retina. The retina is a soft, transparent layer of nervous tissue made up of3



4 1. Introdution

Figure 1.1: A tranverse setion of the left eyeball (superior view)millions of light reeptors.The retina is onneted to the brain by the opti nerve. All of the strutures neededto fous light onto the retina and to nourish it are housed in the eye, whih an beonsidered, from this point of view, a supporting shell for the retina.Two separate vasular systems are involved in the nutrition of the eye. The �rst ismade up of the uveal, or iliary, blood vessels and supply the oxygen to the iris, theiliary body and the horoid. It serves also in part the nervous tuni, that owns afurther an autonomous vasular system, whose vessels are alled retinal vessels.The retinal vessels are distributed within the inner two thirds of the retina, whereasthe outer layers, inluding the photoreeptors, are avasular and nourished from thehoroid. An avasular zone, whih enables light to reah the entral photoreeptorswithout enountering a single blood vessel, is seen entrally in the fovea. Arteries andveins are loated within the nerve �ber layer. The apillaries are arranged in a lami-nated fashion with two layers of �at apillary networks in a large part of the retina.



1.2 Imaging Tehniques 5
The retinal apillaries have a diameter of 5 - 6 µm [1℄. Retinal arterial diametersrange between 40 - 160 µm [2℄, 160 µm presumably refers to the entral artery. Thediameters of the superior temporal and inferior temporal branhes measures approxi-mately 120 µm [3℄.1.2 Imaging TehniquesTraditionally, the retina has been observed diretly via either an ophthalmosope orsimilar optial devies suh as the fundus amera. Fundus photography (also knownas �retinal photography�) refers to a non-invasive tehnique for the doumentation ofthe posterior pole of the eye (retina and horoid) utilizing a olor �lm and a speializedinstrument alled �fundus amera�. Fundus photography was �rst desribed by Jakmanand Webster in 1886, and modern fundus photography began with the introdution ofommerially available fundus ameras in 1926. In Figure 1.2 we have an example offundus image where the main strutures of the retina are pointed out.

Figure 1.2: An example of fundus imageThe term �red-free� refers to fundus photographs taken either using (a priori) agreen �lter (540 - 570 nm) over the light soure or extrating (a posteriori) from the



6 1. Introdutionoriginal olor images the green hannel, whih gives the highest ontrast between ves-sels and bakground [4℄. After the aquisition, the images are digitized, thus beomingavailable for omputer proessing.Other imaging tehniques are ommonly used in mediine. In 1961 �uoreseinangiography, or �uoresent angiography, was developed by Novotny and Alvis [5℄. Inthis ase, sodium �uoresein is injeted into a vein, and under �ltered light the sodium�uoresein within the blood �uoreses, glowing brightly and providing easily observedpatterns of blood �ow within the eye. This allows the arteries, apillaries and veinsto be easily identi�ed and photographed, and from this, large amounts of informationonerning the health of the irulatory system an be determined. One the dye isadministered the speed with whih passages �ll with marked blood, the rate at whihthis marked blood spreads through the eye and the time taken for the dyed blood topass out of the eye are observed. These observations provide valuable data about thee�etiveness and degree of degeneration of the irulatory system of the eye, whih hasbeen shown to be indiative of the irulatory system of the entire body.During the 1990's the indoyanine green dye angiography tehnique was devel-oped; similarly to the �ouresein angiography, a dye is injeted into the blood, howeverthe indoyanine green dye glows in the infra-red setion of the spetrum. The indoya-nine green dye approah only ame into widespread use when digital ameras sensitiveinto the infra-red beame ommonly available, and it omplements �uoresein angiog-raphy by highlighting di�erent aspets of the vasolature of the eye. In partiular itenhanes the struture of the horoid, whih is the layer of blood vessels beneath theretina. These two tehniques an be used together to gain a more thorough under-standing of the struture and pathologies a�eting an eye. They an illustrate patternsof blood �ow, haemorraging and obstrutions within the vasular system, but, like theophthalmosope, both require trained medial sta� to perform the proedure, and alinial environment where the images an be taken and analysed.In addition to these methods for observing the vasolature of the eye, there is avariety of other, more advaned, methods for mapping strutures and hanges withinthe eye, inluding ultrasound and laser tomography and laser-based blood �owmeters indevelopment and in use. All of these an be used to san the eye and make observationsand diagnoses on the eye and irulatory system.1.3 Arhives of retinal imagesSeveral arhives of digital fundus images are of publi domain. They all refer to projetsdevoted to develope systems for the automati diagnosis of the human eye diseases.



1.4 Mathematial de�nition of image 7
One of these arhives is the DRIVE (Digital Retinal Images for Vessel Extration)database [6℄, that onsists of a total of 40 olor fundus photographs. All images havebeen deidenti�ed, they were stripped from all individually identi�able information andproessed in suh a way that this information annot be reonstruted from the images.The photographs were obtained from a diabeti retinopathy sreening program in TheNetherlands. The sreening population onsisted of 453 subjets between 31 to 86 yearsof age. Eah image has been JPEG ompressed, whih is ommon pratie in sreeningprograms. Among the 40 images in the database, 7 ontain pathologies, namely exu-dates, hemorrhages and pigment epithelium hanges.The images were aquired using a Canon CR5 non-mydriati 3CCD amera with a45 degree �eld of view (FOV). Eah image is aptured using 8 bits per olor plane at768 × 584 pixels. The FOV of eah image is irular with a diameter of approximately540 pixels.The set of 40 images was subdivided into a test and a training set both ontaining20 images. Five independent human observers manually segmented a number of im-ages. All observers were trained by an experiened ophthalmologist. The �rst observersegmented 14 images of the training set while the seond observer segmented the other6 images. The test set was segmented twie resulting in a set X and Y. Set X wassegmented by both the �rst and seond observer (13 and 7 images respetively) whileset Y was ompletely segmented by the third observer. The performane of the vesselsegmentation algorithms is measured on the test set. In set X the observers marked577,649 pixels as vessel and 3,960,494 as bakground (12.7% vessel). In set Y 556,532pixels are marked as vessel and 3,981,611 as bakground (12.3% vessel).1.4 Mathematial de�nition of imagesWe deal with digital image analysis, so we have to properly de�ne the notion of image.Nowadays, images on omputers are stored using disrete representation of the data butone generally assumes that the disretization is thin enough (in the spatial diretions)to be able to approximate these disrete signals by ontinuous (or at least pieewiseontinuous) mathematial funtions. This is debatable and we refer the reader to [7, 8℄for interesting disussions about this subjet. Nevertheless, the possibility to applylassial mathematial tools as well as the good results obtained with ontinuous mod-els lead us to hoose this approah.Analitially, a generi n-dimensional image an be de�ned as an adimensional on-tinuous funtion



8 1. Introdution
I(x) : x ∈ Ω ⊂ ℜn → ℜm (1.1)where Ω is the image domain.Common values are n = 2 (2D or bidimensional images) and n = 3 (3D images).In the following of this thesis we will refer only to the bidimensional ase without loss ofgenerality: as a matter of fat, the results that we will obtain an be straightforwardlyextended to higher dimensional ases. If m = 1 we deal with monoromati images.For olor images, we have m = 3. A ommonly used spae is RGB (Red, Green, Blue)olor spae, but many other olor spaes are widely used: for example HSV (Hue, Satu-ration, Lightness) or YUV spaes (a model that de�nes the olor spae in terms of onebrightness and two hrominane omponents).We assume (working hypothesis) that Ω is a square domain; for n = 2 we have:

Ω ∈ [0, 1] × [0, 1] (1.2)For monoromati images, I(x) an be physially thought of as a funtion that asso-iates a brightness level to any point P ≡ (x, y) ∈ Ω. This value is named gray level:high values represent bright regions of the image, low values orrespond to dark regions.Mathematially, we an think of I(x, y) as a surfae in the ℜ3 spae (x, y, I), asillustrated in Figure 1.3

(a) (b)Figure 1.3: (a) the image I(x, y) (b) I(x, y) as surfae in a 3D spae.



1.5 Image derivatives 9We assume, moreover, that
I ∈ [0, 255] (1.3)This hoie allows us, after a quantization proess, to represent the gray levels of a on-tinuous image with a 8-bit enoding inside a omputer. Considering a generi Î ∈ [a, b],we an get bak the onventional range through the following relationship:

I =
Î − a

b − a
255 (1.4)A omputer an proess only a numerial representation of an image, de�ned as amatrix MI of dimension M × N . Eah element of the matrix MI is representative ofthe onstant level of brightness of one subregion of the image (the pixel). Supposing touse an 8-bit enoding, 256 possible values (from 0 to 255) are assoiated to every pixel.We an pass from I(x) to MI , through an intermediate step, the disrete representation

DI . We divide the domain in many idential square dowels Ωi,j (in analogy with theregular disposition of the pixels in the image). A value of onstant brightness, obtainedby sampling I(x, y) in the enter of the dowel is assoiated with every subdomain Ωi,jis assoiated. What we have at this point is a matrix IM of real values, belongingto the interval [0,255℄. This is the disrete representation of an image. This is therepresentation used in analog iruits for image proessing, suh as the so-alled ellularNeural Networks (CNNs) [9℄.By quantizating the set of brightness values, instead, we obtain the matrix MI ofnatural values, belonging to the set {0,255}, that onstitutes the numerial repre-sentation of an image. This is the representation we have to use if we want to proessimages using a digital arhiteture.1.5 Image derivativesThe derivative of an image I with respet to the variable a is written as follows
Ia =

∂I

∂a
(1.5)The derivatives of a salar image I with respet to its spatial oordinates (x, y) formthe image gradient and is denoted by ∇I

∇I = (Ix, Iy)
T (1.6)



10 1. Introdution
By varying (x, y) the image gradient desribes a vetor-valued �eld ∇I : Ω → ℜ2 rep-resenting the maximum variation diretions and magnitudes of the salar image I. Thegradient norm ‖∇I‖ =

√

I2
x + I2

y is often used in image analysis, sine it gives a salarand pointwise measure of the image variations, as shown in Figure 1.4.

(a) (b)Figure 1.4: (a) The image I(x, y) (b) Its gradient norm ‖∇I(x, y)‖.For diretional derivatives in a diretion u = (u, v)T ∈ ℜ2, we use the followingnotations:
Iu =

∂I

∂u = ∇Iu = uIx + vIy (1.7)In the same way, the seond derivative of a salar image I with respet to a and b isdenoted by
Iab =

∂2I

∂a∂b
(1.8)We de�ne the Hessian of I as the matrix H of the seond derivatives with respet tothe spatial oordinates:

H =

[

Ixx(x, y) Ixy(x, y)
Iyx(x, y) Iyy(x, y)

] (1.9)The matrix H will be largely used throughout this thesis. We assume that our images



1.6 Objetives 11are regular enough, so that Ixy = Iyx. Then, H is a symmetri matrix. As for se-ond diretional-derivatives in a diretion u = (u, v)T ∈ ℜ2, the following notations areequivalent:
Iuu =

∂2I

∂u2
= ∇(∇Iu)u = uT Hu = trace(HuuT )

= u2Ixx + 2uvIxy + v2Iyy (1.10)A ommonly used operator involving the seond order derivatives is the Laplaian op-erator ∆, de�ned as follow:
∆I = trace(H) = Ixx + Iyy (1.11)1.6 ObjetivesIn this thesis we use arhives of images to train an algorithm for the vessel segmentationof retinal fundus images.In this hapter, we introdued some notations about the eye, the imaging tehnologyand the arhives of images.In the seond hapter we show the state of the art of the tehniques proposed in thesienti� literature onerning vessel extration.Sine retinal vessels have a range of di�erent sizes, it is a natural hoie the use of analgorithm based on the multisale analysis, so in the third hapter we deal in detailwith the multisale paradigm, and we disuss a mathematial framework to fae thismatters using a di�erential and variational approah.In the fourth hapter we talk about the algorithm developed to ahieve the segmentationof retinal vessels. The algorithm is modular and is made up of two fundamental bloks.The former is devoted to vessel enhanement, using a linear multisale analysis for ridgedetetion, while the latter provides a binary image by resorting to both a thresholdingproedure and leaning operations. The optimal values of two algorithm parametersare found out by maximizing proper measures of performanes able to evaluate from aquantitative point of view the results provided by the proposed algorithm. The hoieof the measure of performane allows one to tailor the solution to the spei� imagefeatures to be emphasized. Some simulation results are presented and the performanesof the algorithm are ompared with those of other methods proposed in the literature.In the �fth hapter we show the improvements of the results that obtain by using anonlinear multisale analysis (Total Variation Motion) instead of the linear one used inthe previous hapter.
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Chapter 2Vessel segmentationThe purpose of image segmentation is to partition an image into meaningful regionswith respet to a partiular appliation. Image segmentation has been, and still is, arelevant researh area and hundreds of segmentation algorithms have been proposed inthe last 30 years. Many segmentation methods are based on two basi properties ofthe pixels in relation to their loal neighbourhood: disontinuity and similarity. Meth-ods based on pixel disontinuity are alled boundary-based methods, whereas methodsbased on pixel similarity are alled region-based methods. However, it is well knownthat suh segmentation tehniques - based on boundary or region information alone -often fail to produe aurate segmentation results [10℄. Hene, in the last few years,there has been a tendeny towards algorithms whih take advantage of the omplemen-tary nature of suh information.Reviewing the di�erent works on region-based segmentation whih have been pro-posed [11, 12℄, it is interesting to note the evolution of region-based segmentation meth-ods, whih were initially foused on grey-level images, and whih gradually inorporatedolour, and more reently, texture. As a matter of fat we an think to extrat fromthe image a map of the feature of interest and apply the segmentation task to this andnot to the original greysale image.This is a natural hoie if we want to segment parts of image that share a partiular ge-ometrial pattern, like the vessels in fundus retina, whih an be identi�ed onsideringtheir tabular struture, thinking a bidimensional image as a 3D surfae.2.1 State of the art in vessel extration tehniquesBlood vessel delineation on medial images forms an essential step in solving severalpratial appliations suh as diagnosis of the vessels [13, 14, 15℄. It an be useful alsoas a preliminary step for registration of images of the same patient obtained at di�erenttimes. 13



14 2. Vessel segmentationThe segmentation task aims to isolate the struture of interest of the fundus imagehighlighting them versus other regions of the image that are onsidered not important(e.g. vessels versus opti disk); moreover, the proessing of this kind of images anbe divided in two steps: the �rst one is the segmentation itself, the seond one is theextration of parameters of interest from the segmented image (e.g. vessel diameter,number of olusions or haemorrhagies, et.).The segmentation is then useful to pre-proess in the best way the fundus image, try-ing to eliminate elements unneessary in the further analyses and to highlight what isimportant in the spei� ontext of the appliation.The vessel segmentation an be obtained by resorting to di�erent methods (see[14, 16℄ for an overview), either rule-based or supervised. In the latter ase, the rulefor the vessel extration is �learned� by the algorithm on the basis of a training setof referene manually-proessed images. Various algorithms with a partial supervisionstrategy have been reently proposed [17, 18, 19℄.We don't enfore any taxonomy at the beginning of this hapter. Instead, we putinto the same group papers that use similar approahes. During the ategorizationthat follows in the next pages, we try to be as spei� as possible. In the following, asummary of vessel extration tehniques and algorithms is proposed:1. Pattern reognition tehniques;(a) Mathing �lters approahes(b) Ridge-based approahes() Region growing approahes(d) Multi-sale approahes(e) Skeleton-based approahes(f) Mathematial morphology shemes2. Deformable models(a) Ative ontours (Snakes)(b) Level set methods3. Traking-based approahes4. Arti�ial-intelligene-based approahes5. Neural-network-based approahes6. Wavelets



2.2 Pattern reognition tehniques 152.2 Pattern reognition tehniquesPattern reognition (PR) tehniques deal with the detetion or lassi�ation of objetsor features. Humans are very well adapted to arry out PR tasks. Some of the PRtehniques are the adaptation of human PR ability to the omputer systems. In thevessel extration domain, PR tehniques are onerned with the automatial detetionof vessel strutures and features.2.2.1 Mathing �lters approahesMathing �lters approah onvolves the image with multiple mathed �lters for theextration of objets of interest. In extrating vessel ontours, designing di�erent �ltersto detet the vessels with di�erent orientations and sizes plays a ruial role [20℄. Theonvolution kernel size a�ets the omputational weight. Mathing �lters are usuallyfollowed by some other image proessing operations like thresholding and onnetedomponent analysis to get the �nal vessel ontours. Conneted omponent analysis ispreeded by a thinning proess to detet vessel enterlines.

Figure 2.1: Example of �lter that enhanes all the patterns oriented like the arrowThe mathed �lter method has some parameters governing its detetion proess. The



16 2. Vessel segmentation

(a) (b)Figure 2.2: (a) A red-free image. (b) Elaboration result using mathing �lters.values of mathed �lter parameters were proposed in [20℄ and have been used sine thenin all other works for appliations and omparisons. In [4℄ a method is proposed toimprove the thresholding (and hene the segmentation) of the mathed �lter outputimage but the mathed �lter parameters are never hanged. Only in [18℄ an optimiza-tion method using the DRIVE [6℄ database to adjust the mathed �lter parameters toinrease the performanes is presented. The optimization proedure is performed byomparing eah edge deteted image to the referene hand-labeled image to obtain the�lter parameters.2.2.2 Ridge-based approahesRidge-based methods treat graysale images as 3D elevation maps in whih intensityridges, whih oinide approximately with vessel enterlines, approximate the skeletonof the tubular objets [21℄. After reating the intensity map, ridge points are loalpeaks in the diretion of maximal surfae gradient, and an be obtained by traing theintensity map from an arbitrary point, along the steepest asent diretion. Ridges areinvariant to a�ne transformations and an be deteted in di�erent image modalities.These properties are exploited in medial image registration [22, 23℄.In [14℄ an algorithm based on the extration of image ridges is disussed. The ridgesare used to ompose primitives in the form of line elements. An image is partitioned bythe line elements into pathes by assigning eah image pixel to the losest line element.Every line element onstitutes a loal oordinate frame for its orresponding path. Forevery pixel, feature vetors are omputed that make use of properties of the pathesand line elements. The feature vetors are lassi�ed using a NN-lassi�er and sequen-tial forward feature seletion. The algorithm is trained and tested using the DRIVE [6℄



2.2 Pattern reognition tehniques 17database.2.2.3 Region growing approahesStarting from some seed point, region growing tehniques segment images by inre-mentally reruiting pixels to a region, on the basis of some prede�ned riteria. Twoimportant segmentation riteria are value similarity and spatial proximity [24℄. It isassumed that pixels that are lose to eah other and have similar intensity values arelikely to belong to the same objet. The main disadvantage of region growing approahis that it often requires user-supplied seed points. Due to the variations in image in-tensities and noise, region growing an result in holes and over-segmentation. Thus, itrequires post-proessing of the segmentation result.2.2.4 Multi-sale approahesMulti-sale approahes perform segmentation at various image resolutions. The mainadvantage of this tehnique is its high proessing speed. Major strutures (large vesselsin our appliation domain) are extrated from low resolution images while �ne stru-tures are extrated at high resolution. Another advantage is the high robustness. Aftersegmenting the thik strutures at the low resolution, small strutures, suh as branhes,in the neighborhood of the strong strutures an be segmented at higher resolution.M. E. Martinez-Perez et al. [25, 15℄ propose a blood vessels segmentation algorithmbased on a multi-sale analysis. Two geometrial features based on the �rst and theseond derivative of the intensity image, maximum gradient and prinipal urvature, areobtained at di�erent sales by means of Gaussian derivative operators. A multiple passregion growing proedure is used, whih progressively segments the blood vessels usingthe feature information together with spatial information about the eight-neighboringpixels. The algorithm works with red-free as well as �uoresein retinal images.2.2.5 Skeleton-based approahesSkeleton-based methods extrat blood vessel enterlines. The vessel tree is reated byonneting these enterlines. Di�erent approahes are used to extrat the enterlinestruture. Some of these methods are: (i) thresholding and then objet onnetivity,(ii) thresholding followed by a thinning proedure, and (iii) extration based on graphdesription.



18 2. Vessel segmentation2.2.6 Mathematial morphology shemesMorphology relates to the study of objet shapes. Morphologial operators (MO) applystruturing elements (SE) to images, and are typially applied to binary images butan be extended to gray-level images. Dilation and erosion are the two main MO.Dilation expands objets by a SE, �lling holes and onneting disjoint regions. Erosionshrinks objets by a SE. Closing, dilation followed by erosion, and opening, erosionfollowed by dilation, are two further operations. Two algorithms used in medial im-age segmentation and related to mathematial morphology are top hat and watershedtransformations. [26℄.In [27℄, F. Zana and J. C. Klein present an algorithm that ombines morphologial�lters and ross-urvature evaluation to segment vessel-like patterns. Blood vessel pat-terns in retinal fundus images are bright features de�ned by morphologial properties:linearity, onnetivity and urvature of vessels varying smoothly along the rest line.On the basis, mathematial morphology is used to highlight vessels with respet to theirmorphologial properties. However, other patterns �t suh a morphologial desription.In order to di�erentiate vessels from analogous bakground patterns, a ross-urvatureevaluation is performed. Vessels are deteted as the only features whose urvature islinearly oherent. The detetion algorithm that derives diretly from this modeling isbased on four steps: 1) noise redution; 2) linear pattern with Gaussian-like pro�leimprovement; 3) ross-urvature evaluation; 4) linear �ltering. The algorithm has beentested on retinal photographs of three di�erent types: �uoroangiography, gray imagesobtained with a green �lter, and olor images with no �lter. Oasionally a short pre-proessing step is neessary, sine the algorithm only works with bright patterns in graylevel images.2.3 Model-based approahesWe divide deformable models into two ategories: parametri deformable models andgeometri deformable models. These ategories are disussed in detail in the next se-tions.2.3.1 Ative ontours (Snakes)Deformable models are model-based tehniques that �nd objet ontours using para-metri urves, whih deform under the in�uene of internal and external fores. Firstintrodued by Kass, Witkin, and Terzopoulos in 1987 [28℄, ative ontour models or



2.3 Deformable models 19snakes are a speial ase of a more general tehnique of mathing a deformable modelby means of energy minimization. Physially, a snake is a set of ontrol points, alledsnaxels, in an image that are onneted to eah other. Eah snaxel has an assoiatedenergy that either rises or falls depending upon the fores that at on it. These foresare known as snake's internal and external fores, respetively. Internal fores serveto impose smoothness onstraints on the ontour while external fores pull the snaketowards the desired image features like lines and edges. We an represent the snakeparametrially by v(s) = (x (s) , y (s)), where x(s) and y(s) are oordinate funtionsand s ∈ [0, 1]. The snake's total energy is:
Esnake =

∫ 1

0
Fsnake (v (s)) ds (2.1)The smoothness onstraint imposed by elastiity energy makes the deformable modelsrobust to noise. The main disadvantage is that usually it requires user interation toinitialize the snake. It also requires initial parameters given by the user. Automatisnake initialization is an ative ongoing researh topi [29, 30℄.In [19℄ a system inspired to the lassial snakes but inorporating spei� domainknowledge, suh as blood vessels topologial properties, is developed. This approahtakes advantage also from the automati loalization of the opti dis and from theextration and enhanement of the vasular tree enterlines. The method ahieves en-ouraging results in the detetion of arteriovenous strutures. The systems performaneis evaluated on the publi DRIVE database.2.3.2 Level set methodsCaselles et al. [29℄ and Malladi et al. [31℄ use the Level Set Method (LSM) approahdeveloped by Osher and Sethian [32℄ and adapt it to shape reognition to model anatom-ial patterns. The main idea behind the Level Set Method is to represent propagatingurves as the zero level set of a higher dimensional funtion whih is given in the Eu-lerian oordinate system. Hene, a moving front is aptured impliitly by the level setfuntion (LSF). The advantages of this approah are:1. It an handle omplex interfaes whih develop sharp orners and hange theirtopologies during the development;2. Intrinsi properties of the propagating front suh as the urvature and normal tothe urve an be easily extrated from the level set funtion;3. Sine the level set funtion is given in the Eulerian oordinate system, disretegrids an be used together with �nite di�erenes methods to obtain a numerialapproximation to the solution;



20 2. Vessel segmentation4. It is easily extendable to higher dimensions.2.4 Traking-based approahesPattern reognition approahes apply loal operators to the whole image. These meth-ods require the proessing of every image pixel and numerous operations per pixel.This an be very time expensive. On the other hand, traking-based approahes workby �rst loating an initial point and then exploiting loal image properties to traethe vasolature reursively. They only proess pixels lose to the vasolature, avoidingthe proessing of every image pixel, and so are appropriately also alled �exploratoryalgorithms�. They have several properties that make them attrative for real-time high-resolution proessing, sine they sale well with image size, an provide useful partialresults, and are highly adaptive while being e�ient.

Figure 2.3: Example of segmented images using a traking algorithm: the three imagesrefer to results obtained using an inreasing number of seeds (from (a) to ()): we anappreiate the inreasing number of extrated vessels.Vessel traking approahes detet vessel enterlines or boundaries by analyzing the pix-els orthogonal to the traking diretion. Di�erent methods are employed in determiningvessel ontours or enterlines. Edge detetion operation followed by sequential traingby inorporating onnetivity information is a straightforward approah. Aylward et al.in [22℄ utilize intensity ridges to approximate the medial axes of tubular objets suhas vessels. Some appliations ahieve sequential ontour traing by inorporating intothe next step the features, suh as vessel entral point and searh diretion, detetedin previous steps [33℄. Fuzzy lustering is another approah to identify vessel segments.It uses linguisti desriptions like �vessel� and �nonvessel� to trak vessels in retinal an-giogram images. After the initial segmentation, a fuzzy traking algorithm is applied toeah andidate vessel region. Some methods utilize a model in the traking proess andinrementally segment the vessels. A more sophistiated approah to vessel trakingis the use of graph representation [34℄. The segmentation proess is, then, redued to



2.5 Arti�ial intelligene-based approahes 21�nding the optimum path in a graph representation of the image. A disadvantage ofthe vessel traking approahes is that they are not fully automati and require userintervention for seleting starting and end points.We an distinguish three di�erent ways to apply the traking tehnique to ahievevessel segmentation [35℄:
• The initial and �nal points of the vessel (and sometimes also the diretion and thethikness) are manually inserted. Although these algorithms are very aurate,they are not suitable for the automati real-time elaboration of fundus retinaimages sine they need manual inputs and high proessing times.
• The initial point and the diretion of the vessel are manually inserted; then thealgorithm traes reursively the vessel following its pro�le inside the image. Thefat that the vessels are not neessarily onneted in fundus images makes thismethod poorly e�ient.
• The algorithm extrats in a ompletely automati way the vessel network; a pre-liminary phase of analysis allows to set a bunh of seed points from whih to beginthe elaboration, that onsists in the searh of the vessel diretion and its thiknessthanks to the appliation of a series of �lters. In detail, suh �lters are a set ofbidimensional orrelation kernels that work as:1. low-pass di�erentiator �lters along the diretion perpendiular to the vessel.2. low-pass �lter along the vessel itself; they uniform the grey level of the pix-els belonging to a ertain set (de�ned by the size of the kernel) to their mean value.2.5 Arti�ial intelligene-based approahesArti�ial Intelligene-based approahes (AIBA) utilize knowledge to guide the segmen-tation proess and to extrat vessel strutures. Di�erent types of knowledge are em-ployed in di�erent systems from various soures. Possible knowledge soures are theproperties of the image aquisition tehnique, suh as ine-angiography, digital sub-tration angiography (DSA), omputed tomography (CT), magneti resonane imaging(MRI), and magneti resonane angiography (MRA). Some appliations utilize a generalblood vessel model as a knowledge soure. Smets et al. [36℄ enode general knowledgeabout appearane of blood vessels in the form of 11 rules (e.g., vessels have high in-tensity enter lines, omprise high intensity regions bordered by parallel edges, et.).Stans�eld [37℄ applies a domain-dependent knowledge of anatomy to interpret ardiaangiograms in the high-level stages. Aording to Stans�eld, �Anatomial knowledge is



22 2. Vessel segmentationembodied within the system in the form of spatial relations between objets and theexpeted harateristis of the objets themselves�. Knowledge-based systems exploita priori knowledge of the anatomial struture. These systems employ some low-levelimage proessing algorithms, suh as thresholding, thinning, and linking, while guidingthe segmentation proess using high-level knowledge. AIBA performs well in terms ofauray, but the omputational omplexity is muh higher than for other methods.2.6 Neural network-based approahesNeural networks are used to simulate biologial learning and are widely used in patternreognition. Neural nets implement basially a lassi�ation approah. The network isa olletion of elementary proessor (nodes). Eah node takes a number of inputs, per-forms elementary omputations, and generates a single output. Eah node is assigneda weight and the output is a funtion of weighted sum of the inputs. These weights arelearned through training and then used in the reognition.Bak-propagation algorithm is a widely used learning algorithm. One problem as-soiated to learning is that learning depends on the training data set. The size of thetraining data set a�ets the learning proess. The training proedure should be re-run eah time new training data is added to the set. Sine the aforementioned neuralnetworks require a training data set, the learning proess is a supervised learning. Adi�erent lass of neural networks are self-teahing and do not depend on training dataset for the learning. The best known of these lass of neural networks is Kohonen fea-ture maps or [38℄ self-organizing networks. Interested readers are referred to [39, 40℄,and Haykin [41℄ for more information on neural networks.In medial imaging, neural networks are mainly used as a lassi�ation methodwhere the system is trained with a set of medial images and the target image is seg-mented using the trained system. One of the advantages that make neural networksattrative in medial image segmentation is their ability to use nonlinear lassi�ationboundaries obtained during the training of the network. One of the disadvantages isthat they need to train every time a new feature is introdued. Another limitation isthe di�ulty of debugging the performane of the network.2.7 WaveletsTo inrease the ontrast between the bakground and the areas of the image with high-est variations of the grey levels (e.g. the areas orresponding to the blood vessels) it



2.7 Wavelets 23is possible to apply spei� transformations to the image itself. An easy one is theso alled Haar transform, that is atually an averaging and di�erening operation. Itoperates by transforming a 1×N array of values into a 1×N array of results. The �rst
[1...N/2] elements of the array are the averages of pairs of the [1...N ] original elements,and the following [N/2 + 1...N ] elements in the array are the detail elements from the
[1...N ] original elements. For the �rst pair of elements in the initial array, [x1, x2, ...],the �rst element in the result array is (x1 +x2)/2, and the orresponding detail elementat position N/2 is (x1 +x2)/2−x1. As the average element is equidistant from both x1and x2, to restore the initial array we simply subtrat the detail element from the aver-age element (this gives us x1) and add the detail element from the average, to restore x2.For 2-dimensional images the transform operation is performed on all rows of theimage and then again on all olumns of the output from the �rst appliation of thetransform. In the typial transform applied to images using standard inverted artesiangeometry, the average elements are stored in the top left quadrant of the input imageand detail elements stored in the remaining 3 quadrants of the image. The average ele-ments from the top left orner are then proessed in the same way as the entire imagewas to begin with, to perform the seond level of the transform. This proess an berepeated as many times as desired, eah time further reduing the size and resolutionof the output image. Figure 2.4 skethes the way how the Haar transform works, whilean example is given in Figure 2.5.

Figure 2.4: Haar transform applied to vetors and matrixes: the two vetors at the leftrepresent the appliation of the Haar transformation on row vetors and olumn vetors(average elements in red, detail elements in green). At the right, the transformationof a matrix NxN is represented, �rst by row, then by olumns of the matrix resultingfrom the �rst phase of the transform. The olors point out the type and the order ofthe result. We get so a matrix NxN that ontains four images, every of dimension N/2x N/2, eah one being the result of a di�erent transformation of the original image.
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(a) (b)Figure 2.5: An example of appliation of the Haar transform to a typial fundus retinaimage.In [42℄ a method for automated segmentation of the vasolature in retinal images is pre-sented. The method produes segmentations by lassifying eah image pixel as vessel ornonvessel, based on a pixel's feature vetor. Feature vetors are omposed of the pixel'sintensity and two-dimensional wavelet transform outputs taken at multiple sales. Thewavelet is apable of tuning to spei� frequenies, thus allowing noise �ltering andvessel enhanement in a single step. A Bayesian lassi�er is used with lass-onditionalprobability density funtions (likelihoods) desribed as Gaussian mixtures, yielding afast lassi�ation, while being able to model omplex deision surfaes. The probabilitydistributions are estimated on the basis of a training set of labeled pixels obtained fromthe manual segmentations stored in the DRIVE databases.



Chapter 3The multisale analysisIn this thesis we develope a novel algorithm for vessel segmentation in fundus retina im-ages. The algorithm is modular and is made up of two fundamental bloks. The formeris devoted to vessel enhanement involving �multisale theory�. Two ases are studied:linear multisale and an edge-preserving non-linear multisale. In this hapter we dealwith the multisale paradigm and we introdue a proper mathematial framework basedon both a di�erential and a variational approah. In the last part of this hapter we usethis framework to better understand some general properties of the multisale analysis.In the next two hapters we will use the knowledges introdued in this hapter to larifythe behaviour of the multisale ases that will be introdued.As outlined in the previous hapters, omputer-based analysis for automated seg-mentation of blood vessels in retinal images helps eye are speialists to sreen largepopulations for vessel abnormalities. The width of retinal vessels an vary from verylarge to very small. This property of retinal images makes a ompletely automatedvessel segmentation very di�ult. Multisale tehniques have been developed to isolateinformation about objets in an image by looking for geometri features at di�erentsales, i.e. with di�erent sizes [43℄.Within this framework, we pass from the original image to smoothed versions, whihstill ontain signi�ant information. The main parameter of this preliminary transformis the �sale�, a general parameter whih measures the degree of smoothing, or moretrivially, the size of the neighbourhoods whih are used to give an estimate of the bright-ness of the piture at a given point. The so-alled �multisale analysis� tends to giveless loal and therefore more reliable information on the grey level than the original�utuating �pixel�.If we want to extrat a partiular feature from an image, suh as the vessels, weapply the feature detetor at all sales, and then selet the sale orresponding to loalmaxima, with respet to the sales, of measures of the feature strength. Lindeberg in[44℄ has shown empirially that for a tube-like feature as a vessel, a loal maximum an25



26 3. The multisale analysisbe found at the sale orresponding to vessel width.Mathematially, we de�ne without loss of generality the �sale spae� of an image
I(x, y) for a �multisale analysis� Tt the sequene of pitures I(x, y, t) = (TtI) (x, y)that we obtain by applying the operator Tt to I. The operator Tt depend only onone parameter t. For example, if we onsider the lassial multisale analysis due tothe onvolution of an image I with gaussian kernels with di�erent standard deviations σ

I(x, y;σ) = (TσI)(x, y) = Gσ ∗ I (3.1)with
Gσ = G(x, y;σ) =

1

2πσ2
e−

x2
+y2

2σ2 (3.2)in this ase we have t ≡ σ. In other ases, if we refer to a multisale analysis modeledby a di�usion Partial Di�erential Equation (PDE), the parameter t orresponds to thedi�usion time.Roughly speaking, TtI an be thought as a semi-loal version of I where a neighbour-hood of size t around (x, y) has been exploited for determining the value of I(x, y, t).If Tt is a linear operator, we have linear multisale analysis, otherwise we havenon-linear multisale analysis. An example of image at a ertain sale in shown inFigure 3.1.

(a) (b)Figure 3.1: (a) The image I(x, y) (b) The same image at a ertain sale.



3.1 Axioms of multisale analysis 27We said that multisale analysis is useful in vessel extration tasks. Di�erent algo-rithms have been proposed in the literature about this topi (see for istane [15, 45, 46℄).In the next two hapters we will desribe vessel enhanement algorithms based on thiskind of analysis. In this hapter we detail the multisale approah introduing someproperties or axioms. Then we show how, by satisfying these axioms, every sequene ofpitures I(x, y, t) = (TtI) (x, y) an be related to the solution of a seond order PDE:
∂I

∂t
= F (∇I,H(I)) (3.3)where ∇I is the image gradient and H(I) the Hessian matrix (see Setion 1.5).In the literature, the �rst desription of a multisale analysis referred to an operator

Tt and to linear sale spaes. Alvarez et al in [47℄ gave an axiomati desription of themultisale properties and proved the relationship between operator-based multisaleanalysis and PDEs, as introdued with Equation (3.3).The results introdued in the �rst part of this hapter are valid for generi PDEs.In the seond part of this hapter, we deal only with the so alled diverenge form, apartiular di�usion equation also used in image proessing. This equation allows us toestablish a link between the di�erential form and the variational form. We will de�nethe mathematial framework for a variational desription of multisale analysis.We rewrite then the equations given in the divergene form using an equivalent for-mulation, known as oriented 1D Laplaians form, whih allows us to easily point outsome harateristis of the di�usion equation we are going to work with.3.1 Axioms of multisale analysisAlvarez et al in [47℄ introdued an axiomati framework for the use of PDE in multisaleanalysis models. In partiular they formally stated and proved that PDEs are assoiatedto multisale analysis operators Tt whih satisfy a series of formal properties, or axioms.An overview of these axioms is presented in this setion. We introdue and brie�ydesribe them, without the aim of being exhaustive. The �rst six axioms (strong andweak ausality, omparison priniple, grey-level-shift invariane, grey-sale invarianeand translation invariane) state some desiderable properties from the vision theorypoint of view. The last three axioms (generator, regularity, loality) refer to stritlymathematial properties. They are neessary in [47℄ to demonstrate the relationshipbetween operators Tt and PDEs.



28 3. The multisale analysis3.1.1 CausalityWe �rst onsider an axiom, whih in vision theory is alled �ausality� property, or�pyramidal arhiteture� property. This axioms states that Tt an be omputed from
Ts for any s ≤ t, and T0 is the identity. This is natural, sine a oarser analysis of theoriginal piture is likely to be dedued from a �ner one without any dependene uponthe original piture. Of ourse, the �nest piture analysis is the identity.A strong version of this property is:[Strong ausality℄ T0(I) = I, Ts ◦ Tt(I) = Ts+t(I) on ℜ2, for all s, t ≥ 0 and I.If [Strong ausality℄ is satis�ed, the visual proess is redued to a single loop, if thesales are disretized. Indeed, Tt is equivalent to the n-th iteration of T t

n
. A weakerversion of the pyramidal arhiteture hypothesis is the following: we inlude Tt = Tt,0in a family of transition operators Ts,t indexed by 0 ≤ s, t < ∞ and satisfying[Weak ausality℄ Tt+s = Tt+s,s ◦ Ts for all 0 ≤ s, t < ∞.In order to get bak to [Strong ausality℄, one needs to assume that Tt+s,s = Tt,0.From the viewpoint of the theory of pereption, ausality in general is a oherent hy-pothesis, if the image pereptual analysis onsists in a sequene of �lters whih areapplied sequentially. Sine new images are onstantly arriving at the retina, the image-analysis proess is thought of as a �ow of the piture through di�erent �lters, eahassoiated with a sale t.3.1.2 Comparison prinipleThe omparison priniple is an obvious order-preserving property (the �maximum prin-iple�). It means that no enhanement is made, but just a smoothing of the originalimage. Thus if one image G is everywhere brighter than another image I, this orderingis preserved by the operator Tt[Comparison priniple℄ Tt(I) ≤ Tt(G) on ℜ2 for all t ≥ 0 and I, G suh that I ≤ G.This axiom is equivalent, in the ase where Tt is a linear �lter de�ned by TtI = I ∗Ft, tothe inequality Ft ≥ 0. Thus, this axiom is the nonlinear generalization of a nonnegativesmoothing kernel.



3.1 Axioms of multisale analysis 293.1.3 Grey sale invarianeThis axiom and the next one are alled the �morphologial axioms� and are well-knownin mathematial morphology. They state that image analysis must be invariant under�utuations of light and under hanges of position, orientation and sale of the planarshapes.In the ase of digital pitures, many eletroni devies are applied suessively to animage before its arrival at the human eye or at some automati image-analysis devie:sine the grey sale of the resulting image has been hanged by eah devie, the onlysound assumption about the information-preserving properties of the whole hain ofaptors and transmittors is that they might preserve the order of grey levels. In otherterms, if some point or some region was brighter than an another in the original piture,this order should be preserved in the �nal piture.We begin by stating that the image analysis must be independent of the (arbitrary)grey-level sale. In the following, we shall always assume the following weak form ofthis axiom:[Grey-level-shift invariane℄ Tt(0) = 0, Tt(I + C) = Tt(I) + C for any I and anyonstant C.This axiom means that no a priori assumption is made about the range of brightnessof a piture to be observed. Of ourse, this is not absolutely true for natural or arti�-ial photosensitive systems. It is however true that the interpretation of a photographis widely independent of its exposure time: the photograph an be dark or light andyet be identi�ed as essentially the same piture. This axiom is equivalent, in the asewhere Tt is a linear �lter de�ned by TtI = I ∗Ft, to the requirement that ∫ Ft(x) dx = 1.The strong form of the �rst morphologial axiom is[Grey-sale invariane℄ Tt (h(I)) = h (Tt(I)) for all I and all t ≥ 0, where h is anynondereasing real funtion.The funtion h is simply an order-preserving rearrangement of the grey levels. Notiethat the seond relation of [Grey-level-shift invariane℄ is a partiular ase of [Grey-saleinvariane℄.3.1.4 Translation invarianeNow we introdue an axiom whih states that all points of the spae are a priori equiv-alent:



30 3. The multisale analysis
[Translation invariane℄ Tt

(

τh · I
)

= τh (Tt · I) for all h in ℜ2, t ≥ 0, where
(

τh · I
)

(x, y) = I (x + h1, y + h2).In other words, there is no a priori knowledge about loation of any feature of thepiture.3.1.5 Regularity, Loality and GeneratorWe present three stritly mathematial properties. These axioms are neessary ondi-tion in the demonstration of the relationship between the operators Tt and PDEs. Weshortly introdue them without the aim of being exhaustive, for more details pleaserefer to [47℄.We de�ne, the so alled in�nitesimal generator A for the operator Tt as the followinglimit, provided that it exists:[Generator℄ (TtI − I)/t → A[I] uniformly on ℜN , as t → 0+ for smooth I.A way of justifying [Generator℄ is to dedue it from axioms more natural from theviewpoint of pereption. An example of suh an axiom, whih, ombined with theother axioms of the theory, implies [Generator℄ is[Regularity℄ ‖Tt(I + hG) − (Tt(I) + hG)‖∞ ≤ Cht for all h, t in [0, 1], for smooth
I and G, where of ourse C depends on I and G.This last axiom states a natural assumption of ontinuity of Tt and is therefore a strongjusti�ation for the existene of an in�nitesimal generator for the multisale analysis.We next require an axiom on the loal harater of the multisale analysis Tt for t small(and therefore the loal harater of the in�nitesimal generator A):[Loality℄ {Tt(I) − Tt(G)} (x) = o(t) as t → 0+, for all smoth I and G suh that
DαI(x, y) = DαG(x, y) for all |α| ≥ 0 and for all x.where Dα denotes every measure assoiated with a derivative of α-th order. For exam-ple, if α = 1, we an have DαI = ∂I

∂x
or DαI = ∂I

∂y
or DαI = ‖∇I‖. Roughly speaking,this last axiom means that the value of Tt(I) for t small, at any point x, is determinedby the behaviour of I near x.



3.2 Di�erential form of regular multisale analysis operators 313.2 Di�erential form of regular multisale analysis opera-torsNow we introdue an important result that allows us to express the ommonly usedmultisale analysis in a di�erent way: we will report a theorem, proved in [47℄, statingthat the main multisale image proessing models an be related to paraboli partialdi�erential equations (PDEs) of order 2.First of all, it has been proved that if Tt is a multisale analysis that satisfy the �ar-hitetural� onditions [Strong ausality℄, [Regularity℄, [Loality℄, together with [Com-parison priniple℄, and the morphologial onditions [Translation invariane℄ and [Grey-level-shift invariane℄, then there exists a �generator� A for that operator TtThen, onsidering the previous axioms and also [Loality℄, it has been proved thatthere exists a ontinuous funtion F suh that, for any given piture I, I(x, y, t) = TtIsatis�es
∂I

∂t
= F (∇I,H(I)) (3.4)where F is the in�nitesimal generator for Tt (i.e. we have F (∇I,H(I)) ≡ A[I]).Conversely, any partial di�erential equation of the kind of Equation (3.4)orresponds to a multisale analysis satisfying the above mentioned axioms.To better understand the in�uene of eah axiom on the result, we show what wouldhappen if we relax some of the axioms neessary for Equation (3.4). For example, ifinstead of the [Strong ausality℄, we have the [Weak ausality℄, and the obvious adapta-tion of the other axioms to Tt,s, the same result has been proved with a time-dependent

F :
∂I

∂t
= F (∇I,H(I), t) (3.5)Moreover, for example, if we remove [Translation invariane℄, the equation beomesspae-dependent, and F has the form

∂I

∂t
= F (∇I,H(I), x) (3.6)Notie that, in the same way, a dependene of F on I, suh as
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∂I

∂t
= F (∇I,H(I), I, t) (3.7)only ontradits [Grey-level-shift invariane℄.We remark that now the �time� t is the sale parameter: larger values of t lead tosimpler representations. Aording to the framework de�ned above we an observe thatmultisale analysis realizes (in general) a nonlinear di�usion �ltering: the image issimpli�ed step by step and its variations are minimized. In the literature this simpli�-ation proess of a given image is alled regularization.3.2.1 The divergene formDuring the last two deades, nonlinear di�usion �lters have beome a powerful andwell-founded tool in multisale image analysis. Many papers have appeared proposingdi�erent models, investigating their theorethial foundations, and desribing interest-ing appliations. We fous on approahes in divergene form, a partiular ase ofEquation (3.4). In partiular, this form is interesting sine will allow us to establishin the next setion a link between the di�erential form and an alternative variationalde�nition of a similar problem.We have referred to a given image I(x, y) alling I(x, y, t) the sale spae relatedto it. For the sake of larity in the following we rename the original image I(x, y) as

I0(x, y) to more learly distinguish this from I(x, y, t). From now on, we will be inter-ested in regularization due to partial di�erential equation of the lass:
∂I

∂t
= ∇ (g (‖∇I‖)∇I) (3.8)on Ω×(0,∞) with the original image as initial state and homogeneous Neumann bound-ary onditions:

I(x, y, 0) = I0(x, y) on Ω (3.9)
∂I

∂n = 0 on ∂Ω × (0,∞) (3.10)where n denotes the normal to the image boundary ∂Ω.



3.2 Di�erential form of regular multisale analysis operators 33The funtion g (‖∇I‖) is ommonly alled di�usivity. It is a not-inreasing posi-tive funtion, that basially, in the non linear ase, haraterizes the di�usion behaviourby blurring low-ontrast regions muh more than high-ontrast loations (the edge ofthe image). The funtion ‖∇I‖ g (‖∇I‖) is alled �ux. For reasons that will be learonly in Setion 3.4, we have to hoose the funtion g so that to have a non-negative�ux for every value ‖∇I‖.For suh a lass of equations the following properties an be established:1. (Well-posedness and smooth results)There exists a unique solution I(x, y, t) in C∞ (Ω × (0,∞)) and it depends on-tinuously on I0(x, y) with respet to the L2(Ω) norm.2. (Average grey level invariane)The average grey level of the original image
µ :=

1

|Ω|

∫

ω

I0(x, y) dxdy (3.11)is not a�eted by non linear di�usion �ltering:
1

|Ω|

∫

ω

I(x, y, t) dxdy = µ (3.12)for all t > 03. (Convergene to a onstant steady state)
limt→∞ I(x, y, t) = µ in Lp(Ω), 1 ≤ p < ∞The existene, uniqueness and regularity is proved in [48℄, the other results areproved in [49℄.Continuous dependene of the solution on the initial image is of signi�ant pratialimportane, sine it guarantees stability under perturbations. This is relevant whenonsidering stereo images, image sequenes or slies from medial CT (Computed To-mography) or MR (Magneti Resonane) sequenes, sine we know that similar imagesremain similar after �ltering.Average grey level invariane is a property whih distinguishes nonlinear di�usion�ltering from other PDE-based image proessing tehniques, suh as mean urvaturemotion [50℄. The latter is not in divergene form and, thus, an not be onservative.Average grey level invariane is required in some segmentation algorithms suh as the



34 3. The multisale analysisHyperstak [51℄.The third property tells us that, for t → ∞, di�usion �ltering tends to a onstantimage with the same average grey level of I0.3.3 The variational formVariational methods onstitute an interesting alternative to nonlinear di�usion �lters.The idea behind regularization with variational methods is the following. Image reg-ularization an be done by minimizing energy funtionals measuring the global imagevariations. The aknowledged aim is to suppress low image variations mainly due tonoise, while preserving the high ones representing the image ontours. Typial varia-tional methods for image regularization (suh as [52, 53, 54, 55, 56℄) provide a �lteredversion of some given image I0 as the minimizer I∗ of
E (I(x, y; τ)) =

∫

Ω
Ψ(I, Ix, Iy) dxdy

=

∫

Ω
Ψ1 + τΨ2 dxdy

=

∫

Ω
(I − I0)

2 + τΦ (‖∇I (x, y)‖) dxdy (3.13)where Φ(s) : ℜ → ℜ is an inreasing onvex funtion for s > 0 (Φ′ ≥ 0 and Φ′′ ≥ 0).So we want to �nd the funtion I∗(x, y; τ) that minimizes Equation (3.13):
E (I∗) = min

I
E (I) (3.14)The �rst term Ψ1 in the integral is ommonly alled �delity term and enourages sim-ilarity between the regularized image and the original one, while the seond term Ψ2is named regularization term and rewards smoothness, i.e. penalizes the presene ofedges in the image. The smoothness weight τ > 0 is alled regularization parameter.For this lass of regularization methods one an establish a similar well-posednessand sale-spae framework as for nonlinear di�usion �ltering, if one onsiders the regu-larization parameter τ > 0 as sale. In [57℄ the following properties have been proved:1. (Well-posedness and regularity)



3.3 The variational form 35Let I0 ∈ L∞(Ω). Then the funtional Equation (3.13) has a unique minimizer
I∗ in the Sobolev spae H1(Ω). Moreover, I∗ ∈ H2(Ω) and ‖I∗‖L2(Ω) dependsontinuously on τ2. (Average grey level invariane)The average grey level

µ :=
1

|Ω|

∫

ω

I0(x, y) dxdy (3.15)remains onstant under regularization:
1

|Ω|

∫

ω

I∗(x, y; τ) dxdy = µ (3.16)for all τ > 03. (Convergene to a onstant image for τ → ∞)
limτ→∞ ‖I∗(x, y; τ) − µ‖Lp(Ω) for any 1 ≤ p < ∞Let us now give an intuitive reason for this large amount of strutural similaritiesbetween di�usion �lters and regularization methods.3.3.1 The Euler-Lagrange equationsFinding the funtion I∗ that minimizes the funtional E(I) is not a trivial problem.Nevertheless, the Euler-Lagrange equations give a neessary ondition that must beful�lled by I∗(x, y; τ) to reah a minimum of E(I).Let us de�ne a funtion F:

F =
∂

∂I

[

(I − I0)
2
]

− τ
∂

∂x

∂Φ

∂Ix

− τ
∂

∂y

∂Φ

∂Iy

(3.17)The solution of the variational problem an be found out solving
F = 0 (3.18)We alulate now more expliity eah term of F :1.

∂

∂I
(I − I0)

2 = 2(I − I0) (3.19)
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∂

∂x

∂Φ

∂Ix
= τ

∂

∂x

∂Φ(‖∇I (x, y)‖)
∂ ‖∇I (x, y)‖

∂ ‖∇I (x, y)‖
∂Ix

= τ
∂

∂x

[

Φ′ Ix
√

I2
x + I2

x

] (3.20)3.
∂

∂y

∂Φ

∂Iy
= τ

∂

∂y

∂Φ(‖∇I (x, y)‖)
∂ ‖∇I (x, y)‖

∂ ‖∇I (x, y)‖
∂Iy

= τ
∂

∂y



Φ′ Iy
√

I2
y + I2

y



 (3.21)Conluding, we have:
F = 2(I − I0) − τ

∂

∂x

[

Φ′

‖∇I‖∇Ix

]

− τ
∂

∂y

[

Φ′

‖∇I‖∇Iy

]

= 2(I − I0) − τ∇
(

Φ′

‖∇I‖∇I

) (3.22)On the basis of this results we an introdue a link between the divergene and thevariational form, as explained in the next setion.3.3.2 Link between variational and divergene formWe have seen that the solution of a variational problem an be obtained by solving
F = 0 (3.23)that an be rewritten as follows:

(I − I0)

τ
=

1

2
∇
(

Φ′

‖∇I‖∇I

) (3.24)This an be thought of as a fully impliit time disretization of the di�usion �lter
∂I

∂t
=

1

2
∇ (g (‖∇I‖)∇I) (3.25)
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with a time disretization step of size τ and

g (‖∇I‖) ≡ Φ′

‖∇I‖ (3.26)One may thus regard our well-posedness and multisale framework for regularizationmethods as a disrete-time framework for di�usion �ltering, estabilishing a tight rela-tionship between I(x, y, τ) and I(x, y, t) [58℄; in other words, we an write:
I(x, y; τ) ∼= I(x, y, t) (3.27)Moreover, to avoid the diret and di�ult solution of Equation (3.22), a lassi iterativemethod is used: the gradient desent. Atually, Equation (3.22) an be onsidered asthe gradient of the funtional E(I). Starting from I0 as initial ondition and followingthe opposite diretion of this gradient leads to a loal minimizer I∗∗ of E:






I(t=0) = I0

∂I
∂t

= −F

(3.28)Note that this PDE evolution has been parameterized with an (arti�ial) time variablet. It desribes the ontinuous progression of the funtion I until it minimizes E(I). Thenthe PDE speed vanishes: ∂I/∂t = 0.For t → ∞ I tends to a steady state I∗∗ that is a loal minimizer of E(I). It hasbeen proved that if Φ is a onvex funtion, we have only one minimum and then theminimum obtained in this way is the global one (I∗∗ ≡ I∗). More in the general, if Φ isnot onvex, the starting point I0 must be arefully hosen, ideally near the global min-imum of the funtional E(I). Choosing di�erent initializations I0 may lead to di�erentresults (di�erent loal minima).Conluding, the Euler-Lagrange equations make the link between di�erential formand variational form (through Equation (3.26)) in image regularization. Generally, wewill be more interested in the gradient desent itself than in the funtional minimiza-tion, and we will often use the term PDE �ow to desribe suh evolutions. The readeris referred to [59℄ for an exhaustive theory about the alulus of variations.



38 3. The multisale analysis3.4 The oriented 1D Laplaians formThe PDEs in the divergene form are widely used in the literature and are useful if wewant to work with a framework stritly related to equivalent variational formulations,but don't give us diret information about the di�usion behaviour. We an more di-retly understand it if we rearrange the di�usion equations we have onsidered until nowin a new equivalent form, alled oriented 1D Laplaians form. In other words weare interested in establishing a further orrespondene between the previous de�nitionof a di�erential image proessing problem in the divergene form
∂I

∂t
= ∇

(

Φ′
‖∇I‖∇I

)

:= ∇ (g (‖∇I‖)∇I) (3.29)and the following equation:
∂I

∂t
= c1Izz + c2Ivv (3.30)being Idd the seond derivative of I along the generi diretion d = [dx, dy]

Idd :=
(dT

H
)d (3.31)and H the Hessian matrix.This is the so alled oriented 1D Laplaians form, that was �rstly introdued todesribe the behaviour of the Perona-Malik di�usion equation [60, 61℄. Roughly speak-ing, Equation (3.30) an be interpreted as the sum of two oexistent and oriented �heat�ows� (realling a sound analogy with the heat equation ∂I/∂t = ∇2I = Ixx +Iyy) thatsmooth the image along the diretions z and v, respetively, by weighing the two �owswith oe�ients the c1 and c2.In our ase, Equation (3.29) is equivalent to Equation (3.30) if:1. c1 := g2. c2 := g + ‖∇I‖ g′3. z := ∇⊥I

‖∇I‖4. v := ∇I
‖∇I‖In Appendix A we show the proof of this result.



3.4 The oriented 1D Laplaians form 39The unit vetors z and v orrespond respetively to the diretions orthogonal andparallel to the gradient. Note that z is everywhere tangent to the isolevel lines I(x, y) =
a (for every �xed t) of the ontours in the image. The set (z,v) is then a moving or-thonomal basis whose on�guration depends on the urrent point oordinate x = (x, y)(Figure 3.2)

Figure 3.2: An image ontour and its moving vetor basis (z,v)In onlusion, the values (z,v, c1, c2) de�ne the loal geometry of the di�usion pro-ess. In the next subsetion we will use the oriented 1D Laplaians form to mathemati-ally haraterize some properties of the di�usion aording to the framework desribedto now.3.4.1 Link between variational and oriented 1d Laplaians formSine it exists a link between the variational form and the divergene form and a linkbetween the divergene form and the oriented 1D Laplaians form, we an establisha diret link between the variational form and the oriented 1D Laplaians form. Inpartiular, this will allow us to understand why at the beginning of Setion 3.3 wehave imposed to the regularization term of the funtional Equation (3.13) to be onvex.Moreover it will allow us to understand why we have imposed to the �ux assoiated tothe PDE in the divergene form to be non-negative.Starting from the de�nitions of c1 and c2 introdued in the previous setion andonsidering Equation (3.26) we have:
c1 = g =

1

2

Φ′

‖∇I‖
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c2 = g + δg′ =

1

2

Φ′

‖∇I‖ +
1

2
‖∇I‖

[

∂

∂ ‖∇I‖

(

Φ′

‖∇I‖

)]

=
1

2

Φ′

‖∇I‖ +
1

2
‖∇I‖

[‖∇I‖Φ′′ − Φ′

‖∇I‖2

]

=
1

2
Φ′′ (3.32)These results point out the link between the variational representation (introdued withEquation (3.13)) and the oriented 1D Laplaians one.These results are useful to �x up the onditions that let us to avoid inverse di�u-sion, an unstable proess that enhanes image features, and among these the noise. Ifit happens, no uniqueness of the solution and no stability of the proess an be expeted.We do not have inverse di�usion when:1. c1 ≥ 0 ⇒ Φ′ ≥ 02. c2 ≥ 0 ⇒ Φ′′ ≥ 0The spei�ed equivalenies hold by onsidering the range δ = ‖∇I‖ > 0.To avoid inverse di�usion the funtion Φ(δ) has to be monotonially inreasing andonvex, aording to what stated at the beginning of Setion 3.3. Moreover, sine

Φ′ = δg(δ), we have also to impose that the �ux should be non-negative, aording towhat stated in Setion 3.2.13.4.2 About isotropi di�usionConluding, we want to show expliitly under whih onditions we have the so alledisotropi di�usion. A di�usion is named �isotropi� if
c1 = c2 (3.33)Considering the already known results

c1 := g

c2 := g + ‖∇I‖ g′ (3.34)
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then Equation (3.33) is equivalent to

g = g + ‖∇I‖ g′

⇒ g′ = 0

⇒ g = K ∀K ∈ ℜ+ (3.35)In this ase the magnitude of K has e�et only on the speed of the di�usion but noton its nature. We an set K = 1 without loss of generality. Then, aording to Equa-tion (3.8), the only PDE orresponding to an isotropi di�usion is:
∂I

∂t
= ∇(1∇) = ∇2I (3.36)This the so alled heat equation, that will be realled in the next hapter. All the otherkinds of PDEs, in the divergene form, known in the literature realize the so alledanisotropi di�usion.Please note that in this thesis, we will use the term anisotropi as the opposite ofisotropi, to designate a regularization proess that does not smooth the image withthe same weight in all the spatial diretions. In the literature, some authors have dif-ferent de�nitions. For instane, Weikert [49℄ introdues the notions of homogeneousand inhomogeneous �ltering, as well as di�erent de�nitions for the terms isotropi andanisotropi.
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Chapter 4A supervised vessel segmentationalgorithm using linear sale spaeBlood vessels an be viewed as tube-like strutures of di�erent widths, lenghts and ori-entations. To detet this kind of strutures in a fundus retina image, we must searhfor the geometrial feature that desribes them at best, �nding the sale that gives usthe more aurate results. The vessel extration an be obtained by resorting to dif-ferent methods (see Chapter 2 for an overview), either rule-based or supervised. In thelatter ase, the rule for the vessel extration is �learned� by the algorithm on the basisof a training set of referene manually-proessed images. An algorithm with a partialsupervision strategy has been reently proposed [17℄.In this hapter, we propose a modular supervised algorithm for the segmentationof retinal blood vessels on M × N red-free images. The algorithm performs two mainoperations, vessel enhanement and image binarization (plus leaning), and it has twomain harateristis:
• �exibility, due to its supervised nature
• modularity.If we onsider a red-free image I(x, y) as a surfae in a 3D spae (x, y, I), we anrepresent fundus retina image as shown in Figure 4.1 (detail).If we fous our attention on a setion of the surfae in the diretion orthogonal to avessel, we have loally a onvex urve. This will be the basi idea used in the �rst partof our algorithm to ahieve the vessel enhanement.Usually, all the parameters in algorithms for image proessing are heuristially �xeda priori. In other ases, some parameters are �xed by using optimization proedures[18℄. In this hapter we determine two �optimal� signi�ant parameters by properly43
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Figure 4.1: On the left: detail of a generi fundus image. On the right: the same ropin a 3D representation.maximizing some Measures Of Performanes (MOPs) for the algorithm applied to atraining set. This makes the algorithm supervised.The optimization proedure our supervised approah is based on makes this algo-rithm suitable for di�erent purposes. Indeed, the results depend on the hosen MOPand di�erent MOPs an be used to highlight di�erent features in the proessed images.This �exibility ombines with a modular struture of the algorithm, resulting in quiteshort omputation times. As a matter of fat, the two main proessing bloks are madeup, in turn, of sub-bloks, thus making the algorithm highly modular, with the pos-sibility of applying only a subset of the possible proessing operations. Most of thesub-bloks, moreover, an be implemented by enhaning either the proessing aurayor the simpliity. In the latter ase, one redues the quality of the results in favor oflower omplexity and omputation times [62℄.We realize vessel enhanement through sale-spae aording to the multisale anal-ysis theory and the most ritial parameter in this part of the algorithm is the salefator. The image binarization is based on a simple thresholding proedure and themost ritial parameter in this part of the algorithm is the threshold. Generally speak-



4.1 The algorithm 45ing, the sub-bloks the algorithm is made up of are not new. The main novelty elementsare
• the use of optimization proedures (supervised, being applied to an image databasewith referene images) to determine two �optimal� parameters (sale fator andthreshold);
• the ombination of the sub-bloks to produe an aurate result as a trade-o�between proessing quality and omputation omplexity.The obtained results are ompared with those of other methods proposed in theliterature.In partiular, using the 20 images of the DRIVE (Digital Retinal Images for VesselExtration, see Setion 1.3) database test set, we obtain a mean value of 0.9419 for theMaximum Average Auray and a mean value of 0.7286 for the agreement betweentwo observers (K-value). The preliminary optimization step an take several minutes,but one the �optimal� parameters are obtained, eah segmentation of a fundus imagerequires only few seonds. Then this algorithm represents a good trade-o� betweenauray of the results and omputational omplexity.In Setion 4.1 we present the algorithm. It involves a linear multisale analysis, in-trodued by using the mathematial framework disussed in the previous hapter. Afterthe image binarization, we want to determine the value of the �optimal� parameters: theused MOPs are summarized in Setion 4.2, while the target funtion whih is used todetermine the optimal parameters' values is de�ned in Setion 4.3. In Setion 4.4 someresults are presented and ommented and the algorithm performanes are disussed.Some onluding remarks are drawn in Setion 4.5.4.1 The algorithmThe algorithm is made up of two fundamental bloks (see the dashed boxes in Fig-ure 4.2), exhibiting in turn a modular struture. The �rst blok performs a preliminaryontrast enhanement (to ompensate the di�erent illumination onditions of fundusimages) and is devoted to vessel enhanement, while the seond one provides a binaryimage by resorting to both a thresholding proedure and some leaning operations.Of ourse, eah blok may be replaed by other (modular) algorithms. For instane,for the �rst blok one an resort to a multi-sale method for retinal image ontrastenhanement based on the Contourlet transform [63℄ or to an algorithm for luminosityand ontrast normalization [64℄.
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Figure 4.2: Blok sheme of the algorithm. The grey elements are related to the super-vised training algorithm that determines a priori the �optimal� parameters σ and nTh.One these parameters are �xed, the proessing algorithm redues to the blak part ofthe sheme.4.1.1 Contrast enhanement pre-proessingTo ompensate the e�ets of a non uniform lighting, ommon in this kind of imagesand due to hanging onditions during the aquisition proess, a pre-proessing of theimages has to be done. To this end, we use the funtion ADAPTHISTEQ, ontainedin the Image Proessing Matlabr Toolbox, whih performs a Contrast-Limited Adap-tive Histogram Equalization (CLAHE) [65, 66℄.The CLAHE algorithm operates on small regions in the image, alled tiles, ratherthan on the entire image. Eah tile's ontrast is enhaned, so that the histogram of theoutput region approximately mathes a uniform histogram. The neighboring tiles arethen ombined using bilinear interpolation to eliminate arti�ially indued boundaries.The ontrast, espeially in homogeneous areas, an be limited to avoid amplifying anynoise that might be present in the image.We all I0(x, y) the image that we obtain after the ontrast enhanement. In Fig-ure 4.3 an example is shown.4.1.2 Vessel enhanementTo perform the vessel enhanement, we adopt the method introdued in [67℄ and [68℄and then used in [15℄ to proess two-dimensional fundus images. The vessel enhane-ment proedure, devoted to highlight geometri tube-like strutures, is based on theHessian operator H of the funtion I(x, y;σ).
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(a) (b)Figure 4.3: Example of ontrast enhanement. (a) Original image. (b) Enhaned imageThe linear sale-spaeWe all I(x, y;σ) the sale-spae due to a linear multisale analysis and then a lineardi�usion of the image to be proessed I0(x, y). As pointed out in Setion 3.4, lin-ear di�usion is an isotropi di�usion and then realizes an isotropi regularization.It represents the easier way to smooth and simplify data and has onsequently beenreahed by several mathematial formulations: from the restoration sheme proposedby Tikhonov in [69℄ to the lassi linear �ltering of images (for istane in the Fourierspetral spae [70℄), the proposed methods lead to the same regularization behaviour.We use I0(x, y), the enhaned fundus retina image, to start our elaboration. Usingthe framework introdued in the previous hapter we an give a variational formulationof this problem:
E (I(x, y;σ)) =

∫

Ω
(I − I0)

2 + σ ‖∇I(x, y)‖2 dxdy

=

∫

Ω
(I − I0)

2 + σ

(

(

∂I(x, y)

∂x

)2

+

(

∂I(x, y)

∂y

)2
)

dxdy (4.1)where, with respet to Equation (3.13), in this ase we have
Φ(s) = s2 → Φ(‖∇I‖) = ‖∇I‖2 (4.2)
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By remembering the link between the variational form and the di�erential one, ex-pressed in Equation (3.26), we an alulate:

g(‖∇I‖) =
1

2

Φ′

‖∇I‖ =
1

2

2 ‖∇I‖
‖∇I‖ = 1 (4.3)Now, we are able to formulate the same problem by using the divergene form:

∂I

∂t
= ∇(∇I) = ∆I =

∂2I

∂x2
+

∂2I

∂y2
(4.4)and by using I0 as initial ondition. We have obtained the well known heat equation,used in physis, for istane, to desribe heat �ows through solids. As shown in theprevious hapter only linear multisale realizes an isotropi di�usion.Koenderink notied in [71℄ that the solution of Equation (4.4) at a partiular time

t is the onvolution of the original image I0 with a normalized 2D Gaussian kernel Gσof standard deviation σ =
√

2t:
I(x, y;σ) = (TσI0)(x, y) = Gσ ∗ I0 (4.5)In a more expliit notation:

I(x, y;σ) =

∫ ∫

I0(x − u, y − v)Gσ(u, v) dudv (4.6)with
Gσ = G(x, y;σ) =

1

2πσ2
e−

x2
+y2

2σ2 (4.7)This means that the regularization is linear (based on a onvolution). The regulariza-tion behavior is then typial of a linear multisale analysis: the signal is blurred littleby little in an isotropi way during the PDE evolution (see Figure 4.4).Note that onvolving an image by a Gaussian kernel is equivalent to multiply theFourier transform of this image by another Gaussian kernel: the isotropi regularizationbehaves then as a low-pass �lter suppressing high frequenies in the image I.Unfortunately, image ontours are high frequeny signals as well as noise. As illus-trated in Figure 4.5, they are quikly blurred by suh an isotropi sheme. The needto resort to more omplex non-linear and anisotropi regularization methods quiklyappeares (in partiular for noise removal image restoration purposes). Nevertheless, a



4.1 The algorithm 49

(a) (b)

() (d)

(e) (f)Figure 4.4: Example of linear sale-spae: σ2 = 2, 4, 8, 16, 32, 64.



50 4. A supervised vessel segmentation algorithmbasi linear multisale analysis maybe enough for our segmentation task, keeping theglobal implementation very simple. Moreover, in the next hapter we will investigatethe improvements in the quality of the results that we obtain by using a non linearmultisale analysis.Evaluation of the Hessian matrix and its eigenvaluesWe have now to evaluate the Hessian matrix along the sales and then the seond orderspatial derivatives of I0. We have shown that Gaussian kernel is the sale-spae operatorat the basis of the linear multisale analysis. There is an important additional result:the spatial derivatives of the Gaussian kernel are also solutions of the heat di�usionequation, and, together with the zeroth-order Gaussian (see Equation (4.7)), they forma omplete family of di�erential operators [72℄.Sine we may ommute the di�erential and the onvolution operators
∂

∂x
(I0 ∗ Gσ) = I0 ∗

∂G

∂x
(4.8)the derivative of I0 an be found by onvolving the image with the derivative of a Gaus-sian. This is true for derivatives of any order.Then, the Hessian matrix of I0 ∗ G an be expressed as follows:

H(I0(x, y) ∗ G(x, y;σ)) =

[

Lxx(x, y;σ) Lxy(x, y;σ)
Lyx(x, y;σ) Lyy(x, y;σ)

] (4.9)where
Lαβ(x, y;σ) = I0(x, y) ∗ ∂G(x, y;σ)

∂αβ
, α, β ∈ {x, y} (4.10)For a given value of the sale parameter σ, the eigenvalues λ± of the Hessian matrix

H measure the onvexity of I0 ∗ G in the orresponding eigendiretions [21℄. At eahpoint (x, y;σ), the eigenvalue with the maximum absolute value is denoted as Λ(x, y;σ)and the orresponding eigenvetor is parallel to the diretion of maximum urvature ofthe grey level. In the onsidered red-free images, a high positive urvature marks thepresene of ridges in the low-pass �ltered surfae I ∗ G, i.e., the presene of vessels inthe image. Then, the proessed image an be obtained as follows:
Ĩ(x, y;σ) = max (0,Λ(x, y;σ)) (4.11)
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(a) (b)

() (d)

(e) (f)Figure 4.5: Contours of a fundus image along a linear sale-spae: σ2 = 2, 4, 8, 16, 32, 64.
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The standard deviation σ is our sale parameter and must be properly set.Basially, the sale �ts the average vessel thikness in the onsidered images. Thereare multisale algorithms whih ombine together the results obtained at di�erent sales[15℄. The results are usually aurate, but at the ost of high omputation times. Inthis thesis, we set an �optimal� value for the parameter σ by properly maximizing someMOPs, that are able to quantitatively measure the performanes of the image proess-ing algorithm.Before performing the operations desribed in the next subsetion, the histogram ofthe grey levels of Ĩ(x, y;σ) is strethed between 0 and 255.4.1.3 Image binarization and leaning
Histogram based binarizationIn order to segment the vessels through image binarization, we must identify a properthreshold grey level Th. This threshold an be impliitly hosen by �xing the fration
nTh of image pixels whose intensity level will be set to 0, i.e., those pixels with greylevels between 0 and Th. So doing, the value of Th turns out to be image dependent andit is not in�uened by possible salings on the image luminosity level. The value of nThwill be diretly derived through the optimization proedure desribed in Setion 4.3.Figure 4.7 shows an example of binary image at this proessing stage.Cleaning of spurious elementsOne the binary image is available, it an be desirable to delete spurious elements notbelonging to the vessel network. To this end, we adopted a simple algorithm, that, atbest of our knowledge, is original and is illustrated in Figure 4.8.We �x a virtual grid made up of squares of n×n pixels and, for eah square, we fouson the perimetri pixels. If suh pixels are all blak, we assume that the orrespondingsquare ontains either only bakground pixels or spurious elements, not onneted withthe vessel struture. In both ases, the whole square is set to blak, thus removing thepossible spurious elements.
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(a) (b)

() (d)

(e) (f)Figure 4.6: (a) Ĩ at di�erent sales: sale σ2 = 2, 4, 8, 16, 32, 64.
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Figure 4.7: Example of image that we get after the binarization of Ĩ(x, y;σ), before theleaning task.This leaning algorithm an be iterated by hanging n or the virtual grid position,so as to aurately lean the image, but at the ost of an inreasing omputationale�ort. Figure 4.8 shows what happens if we hoose to iterate the algorithm only twie,with n = 10. In the �rst step, the grid ompletely overs the image (see a detail inFigure 4.8(a)) and some spurious elements or not onneted parts of vessels (see thegrey squares in Figure 4.8(a)) are removed, as shown in Figure 4.8(b). In the seondstep, the grid is shifted by 5 pixel both horizontally and vertially (grey grid in Fig-ure 4.8()) and other elements (see the grey squares in Figure 4.8()) are removed, asshown in Figure 4.8(d).As an alternative, thanks to the algorithm modularity, one may resort to other mor-phologial solutions (e.g., area opening) for the leaning blok in order to ahieve adi�erent trade-o� between speed and auray requirements.Field Of View edge removalWe point out that the blok desribed so far provide not only the vessel tree but alsothe edge of the �eld of view (FOV), as shown in Figure 4.7(a). This edge is evidenedby the vessel enhanement blok and to remove it we must introdue a proper set ofoperations. The histogram of the original image I(x, y) (see Figure 4.9(a)) exhibits an
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(a) (b)

() (d)Figure 4.8: An example of the leaning operation.
evident peak at very low gray levels. This peak is learly distint from the entral partof the histogram, representing the FOV pixels. By resorting to a simple and robustthresholding operation, it is possible to de�ne an M ×N mask made up of white pixelsorresponding to pixels of the FOV and blak pixels elsewhere. The logial multiplia-tion of the binary image resulting from the vessel extration algorithm with this maskprovides images similar to the one shown in Figure 4.9(b), where the edge of the FOV isnot ompletely removed. To aurately delete this edge, we an perform a slight erosionof the white portion of the mask by using, as struturing element, a disk of 5-pixelsradius. This operation is not partiularly sensitive as only the peripheral portion of thevessel tree ould be partially involved.The image provided by the binarization, leaning, and FOV removal bloks is alled
Î(x, y;σ, nTh).
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(a) (b)Figure 4.9: (a) The normalized histogram of the green hannel of a typial fundusimage. Beside this, the negative of a typial binary image obtained by resorting to theproposed vessel extration algorithm without doing any operation to remove the edgeof the FOV. (b) Negative of a typial binary image obtained by applying the blok toremove the edge of the FOV without the preliminary erosion of the white portion ofthe mask.4.2 Measures of performanes for vessel detetionGenerally speaking, a MOP is nothing more than a quality measure that addresses howwell a system works. In this Setion, some MOPs are introdued to evaluate from aquantitative point of view the results provided by the proposed algorithm.The MOPs de�ned in the following are based on two images: a referene binaryimage Ī - resulting from the manual segmentation of a fundus image I performed bypeople trained by an experiened ophthalmologist - and the binary image Î - resultingfrom the algorithm.We remark that, sine Î depends on the algorithm parameters σ and nTh, also eahMOP depends on σ and nTh. For the sake of simpliity, however, in the next subsetionssuh a dependene will be omitted.4.2.1 Maximum Average Auray (MAA)The MAA evaluates the MOP of the vessel detetion algorithm in orrespondene withthe NFOV pixels belonging to the FOV [73℄. This MOP expresses the number of pixels



4.2 Measures of performanes for vessel detetion 57that have been orretly lassi�ed with respet to NFOV :
MAA = 1 −

∑

j,k∈FOV

∣

∣

∣
Ījk − Îjk

∣

∣

∣

NFOV
∈ [0, 1] (4.12)4.2.2 K valuePreliminarily, we de�ne the following quantities: ntp is the perentage of true positivepixels (i.e., white pixels in Î that belong to the manually extrated vessels in Ī), nfp isthe perentage of false positive pixels (i.e., white pixels in Î that do not belong to man-ually extrated vessels in Ī), nfn is the perentage of false negative pixels (i.e., blakpixels in Î that belong to manually extrated vessels in Ī), and ntn is the perentageof true negative pixels (i.e., blak pixels in Î that do not belong to manually extratedvessels in Ī). The over mentioned perentages are taken with respet to the MxN pixelsof the image to be proessed.The K value is a measure of the agreement between two observers [74℄:

K =
OA − EA

1 − EA
∈ [−1, 1] (4.13)where OA = (ntp + ntn) is the observed agreement and EA = (ntp + nfp)(ntp + nfn) +

(nfn + ntn)(nfp + ntn) is the expeted agreement. The index OA expresses the perent-age of pixels of Ī that are orretly lassi�ed in Î , while the index EA expresses theprobability that the two observation oinide. Indeed, EA an be interpreted as thesum between the produt of the perentages of white pixels in Î (ntp + nfp) and in Ī

(ntp + nfn) and the produt of the perentages of blak pixels in Î (nfn + ntn) and in
Ī (nfp + ntn).4.2.3 Q valueThis MOP is de�ned aording to the universal image quality index de�ned in [75℄.Suh an index is �universal� in the sense that the quality measurement approah doesnot depend on the images being tested, the viewing onditions or the individual ob-servers.We onsider two images, t and r, where t is the image whose quality must be evalu-ated (in our ase t = Î), whereas r is the referene image (in our ase r = Ī). To de�nethe index Q, we preliminarily introdue a square window w(j, k) of nw × nw imagepixels. Suh a window slides over the images r and t, starting from the top-left ornerand moving pixel by pixel horizontally and vertially through all the rows and olumns



58 4. A supervised vessel segmentation algorithmof eah image until the bottom-right orner is reahed. The index Q ∈ [−1, 1] is de�nedas follows:
Q(t, r) =

1

|W |
∑

w(j,k)∈W

4σtr(j, k)t̄(j, k)r̄(j, k)
(

σ2
t (j, k) + σ2

r (j, k)
)

(t̄2(j, k) + r̄2(j, k))
(4.14)where |W | is the overall number of possible di�erent positions of the window w overeah image, whereas t̄(j, k) and r̄(j, k), σ2

t (j, k) and σ2
r (j, k), and σtr(j, k) are the meanvalues, the varianes, and the ovariane, respetively, of the images t and r on eahwindow position. The expliit expressions used to alulate the mean values, the vari-anes and the ovarianes of the images t and r at eah window position are provided inAppendix B. For the Q value, we set nw = 8 to have a window large enough to obtainreliable estimates of the mean, variane and ovariane of this MOP .4.3 OptimizationThe binary images obtained by resorting to the supervised algorithm proposed in thishapter depend on the algorithm parameters σ and nTh. For this reason, it is neessaryto de�ne a proedure to hoose proper values for these parameters in order to ensure agood quality of the results. To do that, a training set made up of NTS fundus images(together with their referene segmentations) an be used and σ and nTh an be �xedby maximizing the quality of the results obtained by proessing the images belongingto it. In this sense the proposed algorithm turns out to be supervised.From a pratial point of view, one an hoose one of the MOPs introdued in theprevious setion and then either maximize the following target funtion

F (σ, nTh) =
1

NTS

NTS
∑

k=1

MOPk(σ, nTh) (4.15)or minimize −F (σ, nTh).We have used the simplex searh method of [76℄. It is generally referred to asunostrained non linear optimization. This is a diret searh method, based on the on-vergene properties of the Nelder-Mead simplex method, that does not use numerialor analyti gradients.Suh an algorithm is been implemented in the funtion FMINSEARCH, ontainedin Matlabr. Starting from a initial point P0 = (σ0, nTh0) and using this algorithm, wean �nd only loal minimizers (or maximizers), but this is not a problem sine working



4.4 Simulation results 59in a reasonable spae of the parameters
(σ, nTh) ∈ [1, 8] × [0.85, 0.95] (4.16)the MOPs behave regularly; they are onvex funtions as shown in Figure 4.10 for MAA.
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Figure 4.10: MAA onvex behaviour.This is true also for the other two MOPs, K and Q.4.4 Simulation resultsTo derive the image proessing results presented in this Setion as benhmarks for theproposed algorithm, the 40 fundus images making up the DRIVE database have beenused. In partiular, our training set ontains the last 20 images (NTS = 20) of thedatabase, whereas the �rst 20 images are a test set used to measure the performanesof the algorithm whose parameters have been tuned aording to the optimization pro-edure.



60 4. A supervised vessel segmentation algorithmThe leaning operation has been iterated for many values of n. For eah value of
n, the orresponding grid has been shifted on the image by positioning its upper-leftvertex in all the pixels (j, k) for j = 1, . . . , n − 1 and k = 1, . . . , n − 1. The sequeneof values assigned to n is {3, 4, 8, 16, 4, 8, 16} and has been hosen heuristially aftermany trials. We need to repeat twie some values of n in the sequene, sine a singleappliation would lean only one element in pairs of lose spurious patterns.4.4.1 Training phaseDuring the training phase, for eah MOP de�ned in the previous setion, the opti-mal values of the algorithm parameters σ and nTh have been obtained by maximizing
F (σ, nTh). These values are given in the �rst and seond olumns of Table I, respe-tively. The MOPs values orresponding to the best and worst ases are shown in thethird and fourth olumns, respetively. These values were obtained by proessing theimages of the training set with the optimal values of the algorithm parameters. Fig-ure 4.11 shows the orresponding image-proessing results, i.e., the best (�rst row) andworst (seond row) vessel extration results for the training set images in terms of MAA(a,d), K (b,e), and Q (,f). The number of original images in the database is also given.Table ITable 4.1: Values of σ, nTh, best and worst ases after optimization, for eah MOPMOP σ nTh Best ase Worst ase

MAA 2.0253 0.90946 0.9541 0.9067
K 2.1505 0.89261 0.7610 0.5958
Q 2.0882 0.88603 0.7295 0.5406One the optimal values of σ and nTh have been obtained, the algorithm an beapplied to other images to test its performanes.4.4.2 Test phaseThe �rst two olumns of Table II ontain the mean values and the standard deviations,respetively, of the MOPs obtained by proessing the images of the test set after �x-ing the parameters σ and nTh at their optimal values (see Table I). The values of the
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(a):40 (b):40 ():38

(d):34 (e):23 (f):23Figure 4.11: Best (�rst row) and worst (seond row) vessel extration results for thetraining set images with respet to MAA (a,d), K (b,e), and Q (,f). The databasenumbers of the original images are shown next to the labels.MOPs orresponding to the best (third olumn) and worst (fourth olumn) ases arealso shown. The �fth and sixth olumns ontain the mean values of the True PositiveFration (for eah image, the perentage of vessel pixels atually lassi�ed as vesselpixels) or TPF and of the False Positive Fration (for eah image, the perentage ofnon-vessel pixels atually lassi�ed as vessel pixels) or FPF, respetively, for the 20images of the test set. In Figure 4.12, the segmented images orresponding to thebest (�rst row) and worst (seond row) ases are provided for the test set in terms ofMAA (a,d), K (b,e), and Q (,f). The number of original images in the database is given.
4.4.3 Comparison with other methodsBy resorting to the �rst two MOPs (MAA and K), it is possible to ompare the per-



62 4. A supervised vessel segmentation algorithmTable IITable 4.2: Mean values, standard deviations, best and worst ases, mean TPF and FPFfor the MOPs with σ and nTh set to their optimal values.MOP Mean Standard Best ase Worst ase Mean Meandeviation TPF FPF
MAA 0.94183 0.00822 0.9587 0.9275 0.6377 0.0091

K 0.72860 0.03452 0.8069 0.6642 0.7052 0.0162
Q 0.69123 0.03933 0.7735 0.6247 0.7246 0.0193

(a):19 (b):19 ():19

(d):3 (e):15 (f):15Figure 4.12: Best (�rst row) and worst (seond row) vessel extration results for thetest set images with respet to MAA (a,d), K (b,e), and Q (,f). The database numbersof the original images are shown next to the labels.formanes of the proposed algorithm with the ones of other algorithms that an befound in the literature. The �rst two olumns of Table III ontain the mean values ofboth MAA and K, obtained by a seond independent manual segmentation available



4.4 Simulation results 63for the �rst 20 images of the DRIVE database (�rst row) and by proessing the test setimages by resorting to di�erent methods [73, 14℄: primitive-based method [14℄, pixellassi�ation method [73℄, mathematial morphology and urve estimation method [77℄,veri�ation-based loal thresholding method [78℄, sale-spae analysis and region grow-ing approah [79℄, mathed �lter method [20℄. Among these algorithms, only the pixellassi�ation and primitive-based methods are supervised.Table IIITable 4.3: Comparisons with other methods proposed in the literatureMethod MAA K TPF FPFSeond manual segmentation 0.9473 0.7589 0.776 0.0275Primitive-based method 0.9441 0.7345 0.697 0.019Our algorithm 0.9419 0.7286 0.7246 0.019Pixel lassi�ation 0.9416 0.7145Mathematial morphology 0.9377 0.6971Loal thresholding 0.9212 0.6399Sale-spae and region growing 0.9181 0.6389 0.7246 0.0345Mathed �lter 0.8773 0.3357All bakground 0.8727 0The last two olumns of Table III ontain the mean values of TPF and FPF, re-spetively, for some of the onsidered methods. In partiular, for our method, we havereported the mean TPF and FPF for the MOP Q, whih provides the best results (seeTable II).Comparisons of the results summarized in Tables II and III evidene that the per-formanes of the proposed algorithm are lose to the ones of well-known algorithmsproposed in the literature. On the whole, the results on�rm that supervised methodsrepresent a reliable way to get the best results. We remark that in this ase the al-gorithm is muh less omputationally expensive than the best algorithm in Table III.Using a Matlabr implementation and not a faster C++ one, running on a IntelrCeleronr CPU 2.40GHz with 192Mb RAM, the initial optimization phase of our algo-rithm an take several minutes, but after this, one the �optimal� values for parameters
σ and nTh are �xed, eah segmentation of a fundus image does not require more thansix seonds, for images of size 564x584 pixels. The Primitive-based method algorithm,instead, requires a proessing time of several minutes, in similar onditions [14℄. Weremark that the modular struture of the proposed algorithm may allow one a further



64 4. A supervised vessel segmentation algorithmspeed up of the omputations if ombined with a pipeline arhiteture, i.e., if the sub-bloks an proess in parallel di�erent images.4.4.4 MOPs in�uene on the resultsBy using the Q value as measure of performane, we show how di�erent features ofthe results an be highlighted. In partiular, with this MOP we an detet a highernumber of small vessels, related to higher values of the mean TPF for this MOP (seeTable II). The prie to pay is a larger number of wrongly lassi�ed pixels, related tohigher values of the mean FPF (see Table II). Anyway, we remark that these new falsepositives are on�ned to regions lose to image elements denoting the presene of somepathologies (e.g., drusen, exudates, age-related maular degeneration) and then theya�et the results only for images ontaining this kind of elements.For istane Figure 4.13 shows:1. vessel segmentation of an image with no pathologies, for σ and nTh obtained bytraining with (a) MAA and (b) Q;2. vessel segmentation of an image with signs of mild early diabeti retinopathy, for
σ and nTh from the training with MAA () and with Q (d).The number of original images in the database is given.4.5 RemarksA supervised algorithm for vessel segmentation in red-free images of the human retinahas been proposed. Two parameters have been identi�ed whose hoie seems to bepartiularly ritial. The �optimal� values for these parameters are obtained by opti-mizing proper target funtions, de�ned on the basis of some MOPs. We referred tothree examples of MOPs, but di�erent hoies an �t di�erent spei� requirements.We point out that nowadays there is not, in the literature, a ommon opinion abouta universal MOP able to evaluate adequately the results of most of the algorithms.Moreover, di�erent appliations may need a di�erent attention on spei� aspets ofthe result: as an example, one may be interested in having a higher auray on smallvessels or in determining the vessels' widths or in �nding at best the rami�ations ofthe vessels' tree. Several appliations do not need either all the ited features nor that
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(a):1 (b):1

():8 (d):8Figure 4.13: (a) Vessel segmentation of an image with no pathologies, for σ and nThobtained from the training with MAA. (b) Result for σ and nTh from the training withQ. () Vessel segmentation of an image with signs of mild early diabeti retinopathy,for σ and nTh from the training with MAA. (d) Result from the same image but for
σ and nTh from the training with Q. The database numbers of the original images areshown next to the labels.these features are deteted all at the same time. The proposed algorithm is enough�exible to be ustomized for di�erent appliations, simply by hanging the refereneMOP.We have experimentally veri�ed that hoosing the threshold Th impliitly, by �xingthe fration nTh of image pixels whose intensity level is set to 0, provides better results



66 4. A supervised vessel segmentation algorithmthan hoosing Th diretly. For instane, in the latter ase, we obtain a mean valueof 0.94015 and a standard deviation of 0.00898 for MAA, whih is a worst result ifompared with the �rst row in Table II.With respet to other Hessian-based methods (e.g., [15℄), where two or more thresh-olds are required, our hoie of de�ning the algorithm only for red-free images (settingto zero the eigenvalue Λ(x, y) with maximum absolute value in orrespondene of nega-tive urvature regions) allowed us to obtain satisfatory results with only one threshold.Indeed, in this ase the only high-urvature strutures are the vessels. We point outthat the same algorithm an work with the negative of �uoresein images.The hoie of a single �optimal� sale fator σ, instead of a multi-sale approah,yields similar results, and redues onsiderably the omputational e�ort. As a matterof fat, by using the 20 images of the test set, with a multi-sale algorithm we obtainedthe best average MAA = 0.9423, with sales within the interval of 1 ≤ s ≤ 10 pixelsin steps of 1 pixel and with optimization only on nTh. With our algorithm, the bestaverage MAA was 0.94183 (see Table II). A further visual inspetion of the resultsreveals that there are not appreiable di�erenes in the detetion of small vessels. Onlyslight di�erenes in the width of vessels an be appreiated.We have already remarked that the leaning proedure deletes all the spurious el-ements. It may happen that some of these spurious elements belong to thin vessels,whih remain therefore unonneted to the main tree. Spei� measures allowed us tostate that this is a marginal behavior. As ompared with the omplete algorithm, aversion not ontaining the leaning proedure auses an inrease of 30% in the FPF andof only 4% in the TPF. This on�rms that most of unonneted spurious little lustersdo not belong to the vessel tree. These measures are average values for the 20 imagesof the test set and have been obtained by σ and nTh �xed after the training with MAA(see Table I).Finally, we remark that the quality of the results may be further improved by addingother proessing bloks. For instane, a proedure for removing pixels belonging to theedge of the opti disk ould be introdued. Another improvement for images showingsome pathology (e.g., drusen, exudates, and others) may be obtained by a blok forthe elimination of light objets before segmenting the vessels in pathologial images.As a matter of fat, Figure 4.13 points out that light objets in pathologial imagesusually have a bad in�uene on results, mainly when the objets are near or touh thevasular network. The presene of a blok that eliminates these objets before vesselsegmentation should overome this drawbak, thus having a positive in�uene on thealulation of σ and nTh.



Chapter 5
Improving vessel segmentationusing non-linear sale spae
In this hapter we introdue a modi�ed version of the algorithm desribed in the pre-vious hapter. Our aim is to improve the segmentation results. Furthermore, we use itfor the segmentation of noisy fundus retina images. Denoising (or image restoration)is, with segmentation, one of the most basi image proessing problem. It onstitutesa signi�ant preliminary step in several mahine vision tasks, suh as objet detetionand reognition. It is also one of the mathematially most intriguing problems in vision.A major onern in designing image denoising models is to preserve important imagefeatures while removing noise. An important image feature is given by edges: exatlyto fae this kind of problems, the Total Variation image restoration models were �rstintrodued by Rudin, Osher and Fatemi in their pioneering work [80℄. The variationalform of this models was designed with the expliit goal of preserving sharp disonti-nuities (edges) in images, while removing noise and other undesired �ne-sale details.The funtional is onvex and it is one of the simplest variational approahes having thismost desirable property.We aim to ahieve the vessel enhanement task on the basis of the Total Variationregularization. In the previous hapter we used the linear multisale theory. Now, theseond derivatives and then the urvatures of the ridges are estimated on the basis ofthe Total Variation non-linear sale-spae. After this step, we apply the same bloksintrodued in Chapter 4, to ahieve image binarization and leaning. The two param-eters of interest (sale and threshold) are �xed by properly maximizing only the MAAmeasure of performane. 67



68 5. Improving vessel segmentation using non-linear sale spae5.1 Total variation regularizationTVM (Total Variation Minimization using the variational model or Total Variation Mo-tion onsidering the di�erential form) was originally introdued in image proessing byRudin, Osher and Fatemi in [80℄ and then it has been used in many image proessingappliations. TVM is one of the earliest and best known examples of edge preservingregularization. It was designed with the expliit goal of preserving sharp disontinuities(edges) in images while removing unwanted �ne sale details and among them the noise,if present in the image. Figure 5.1 shows an example of Total Variation non-linear salespae. In Figure 5.2 we an observe the edges of the image: they are preserved betterthan in the linear ase.The Total Variation funtional, assoiated to energies, has appeared and has beenpreviously studied in many di�erent areas of pure and applied mathematis. For in-stane, the notion of Total Variation of a funtion appeared in the theory of minimalsurfaes. In applied mathematis, Total Variation based models and analysis appearin more lassial appliations suh as elastiity and �uid dynamis. Due to [80℄, thisnotion beame entral also in image proessing.At �rst, we introdue the variational form:
E (I(x, y; τ)) =
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dxdy (5.1)The regularization term, for smooth images, is equivalent to the L1 norm of the �rstderivatives. In other words, it orresponds to the integration on the domain Ω of thegradient norm. As the gradient evaluated in a given point is a measure of the variationof the funtion in suh point, the integration over the entire domain must result in thetotal variation (hene the name).It should be notied that TVM is non-linear, i.e., we an't de�ne an operator Ttthat, onvoluted with the funtion I0, returns the total variation result.We want now to underline the mathematial properties that make this multisaleanalysis edge preserving. First of all, we dedue the orresponding divergene formfrom the variational de�nition. Aording to Equation (3.13), we de�ne
Φ(s) = s → Φ(‖∇I‖) = ‖∇I‖ (5.2)
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(a) (b)

() (d)

(e) (f)Figure 5.1: Example of TV sale-spae: t = 5, 10, 50, 100, 150, 200.
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(a) (b)

() (d)

(e) (f)Figure 5.2: Edge of a fundus image along a TV sale-spae: t = 5, 10, 50, 100, 150, 200.
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Then, having in mind Equation (3.26), we evaluate:
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(5.3)and then we are able to express the divergene form:
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) (5.4)with I0 as initial ondition.Equation (5.4) represents an intermediate result. Now we derive the oriented 1DLaplaians form. This is the onluding form that allows us to understand the natureof the di�usion assoiated with the Total Variation:1. For z = ∇⊥I
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= 0Finally, we reah the result:
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‖∇I‖Izz (5.5)This result tells us that the Total Variation Motion desribes a di�usion pro-ess that follows only the diretion orthogonal to the gradient (c1 6= 0, c2 = 0).No di�usion involves the loal edges of the image, so no blurring of them an beobserved during the di�usion proess. In digital images we an have, atually, littledi�usion in the diretion of the edges due to inorret estimates of the edge diretion,but this e�et remains anyway limited thus preserving the main features of the di�usionproess.



72 5. Improving vessel segmentation using non-linear sale spae5.2 The stairasing problemThe image restoration model, based on the Total Variation, tends to yield pieewiseonstant images, i.e., �bloky� images. In other words the TVM method well preservesedges but exhibits the sometimes undesiderable stairase e�et, namely the transforma-tion of smooth regions (ramps) into pieewise onstant regions (stairs). This behaviouran be learly seen in a 1D example, like in Figure 5.3, where the regularization of anoisy signal is shown.This feature is ertainly useful for many appliations, but it an be a serious draw-bak for many others. This is true for our ase, sine the stairase e�et redues theridgeness of the vessels.

Figure 5.3: Left: original 1D signals. Center: noisy 1D signals, SNR ≈ 5. Right: resultof TV restoration.This behaviour is mainly due to huge di�usion near ritial points where the gradientmagnitude of the image is zero, i.e., ‖∇I‖ = 0. We an also notie that Equation (5.4)is not de�ned at these points, due to the presene of the term 1/ ‖∇I‖.To solve this problem it is ommon in the literature [81℄ to introdue a slightlyperturbed norm
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+ ǫ2 (5.6)with ǫ ∈ ℜ. At the end of this setion we will show the e�ets of this hoie on thebehaviour of the di�usion proess.



5.2 The stairasing problem 735.2.1 Variational and di�erential form using the perturbed normNow, we want to derive the divergene and the oriented 1D Laplaians form from thevariational de�nition of our problem (TVM with the pertubed norm). We start from thegeneral de�nition of a variational problem involving the perturbed norm, then we getthe two di�erential representations from this (divergene form and oriented 1D Lapla-ians form). In a seond time we obtain the partiular results for the TVM ase. Atthe end we will be able to diretly understand how the introdution of the perturbednorm a�ets the di�usion behaviour.First of all, it an be easily notied that every funtion of the perturbed norm isimpliity a funtion of the gradient magnitude
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= Φǫ (‖∇I‖) (5.7)This simple onsideration allows us to reuse the results of Chapters 3. For the sake ofonveniene, we introdue the following notations:
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‖∇ǫI‖3 (5.12)Now, we have all the elements to de�ne ompletely the mathematial framework fora general problem involving the perturbed norm. We de�ne the variational form of thisproblem as follows
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for whih we alulate the values of the two di�usion oe�ients that weigh, respe-tively, the di�usion in the diretions orthogonal (z) and parallel (v) to the gradient:
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5.2.2 Variational and di�erential form for TVM aseFor the spei� TVM ase we have to onsider:
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f ′′ = 0 (5.18)Using these results we alulate the exat expression of TVM in all the three represen-tations:VARIATIONAL FORM
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c2 =

‖∇ǫI‖2 − ‖∇I‖2

‖∇ǫI‖3 (5.21)The result for the Laplaian form is interesting sine it shows that, introduing a per-tubation in the norm ‖∇I‖, we have onsequently the presene of a omponent of thedi�usion also in the diretion parallel to the gradient (c2 6= 0). For ǫ → 0 we omebak to the TVM as desribed in Setion 5.1 (stairase problem). Then, for inreasingvalues of ǫ, the amount of di�usion aross the edges inreases gradually and we aneasily observe a larger amount of blur in the regularized image, up to the omplete lossof the edge preserving properties typial of a TVM sheme.The hoie of a useful value of ǫ should represent a trade-o� between these twoopposite behaviours, but we will show that this seems not to be a ritial hoie.5.3 The improved algorithmAt this point we want to test the behaviour of the TVM (and its edge preservingproperties) in a segmentation appliation. To do this, we work with a modi�ed versionof the algorithm introdued in the previous hapter. It hanges sine now we usethe nonlinear sale-spae I(x, y, t) due to TVM, instead of a linear sale-spae. Thealgorithm an be summarized as follows:1. Contrast enhanement pre-proessing2. TVM di�usion using Equation (5.20); we obtain the non-linear sale-spae I(x, y, t)3. Evaluation of the seond derivatives and then the Hessian matrix and its eigenval-ues aross the sales; we obtain the funtion Ĩ(x, y, t), equivalent to the funtionintodued by Equation (4.11)4. Histogram-based binarization5. Cleaning6. FOV removalWe remark that for the TVM the sale parameter is the time t required by thedi�usion proess: the higher time, the higher the blurring we an observe into the ar-eas of the image bounded by edges. One obtained the image at a ertain sale t weevaluate the spatial derivatives by the onvolution of our image with the derivativesof a Gaussian with standard deviation σder = 0.5 and so the Hessian matrix and itseigenvalues. We hoose σder = 0.5 to have a robust estimation of the seond derivatives



5.4 Simulation results 77without perturbing too muh, with a further linear multisale analysis, the results fromTVM.The same bloks introdued in Chapter 4, for image binarization, leaning and FOVremoval are then applied to obtain the segmentation of the vessel tree of the fundusretina images. The �optimal� sale and histogram based threshold are still hosen bymaximazing a MOP. In this hapter we only deal with MAA measure (for further detail,see Setion 4.4).5.4 Simulation resultsIn this setion we show the results obtained by using the modi�ed segmentation al-gorithm. We want only to o�er an overview on signi�ant performanes, to point outmanifest improvements we ahieve with this new version of the algorithm. For the TVMwe have to take into aount also the value of the perturbation ǫ used to avoid or reduethe stairase e�et. We use the results presented in this setion also to investigate anddisuss how they are in�uened by this new parameter in the multisale analysis.We antiipate that this parameter seems to be not ritial. This topi has not beenfaed in this thesis, but �optimal� values of ǫ ould be automatially alulated startingfrom geometrial measures related to the mean value of the vessel edges in the imageto be regularized. Starting from the variational model of the Total Variation, it an beshown that the value of the perturbation of the norm disriminates between �low edges�and �high edges� [80℄. Low edges are assimilated to the noise and blurred like this. Forhigh edges we an observe minimum di�usion aross the edge, similar to the ase of theTotal Variation without perturbed gradient norm.We report the results we obtained by onsidering four di�erent values of the per-turbation ǫ. First of all, regardless the value of ǫ, we obtain lose �optimal� values for tand nTh, after the training phase as desribed in Setion 4.4. By maximazing the MAAmeasure of performane, we have:
ǫ = 10 → (t = 20.364; nTh = 0.9084 )

ǫ = 100 → (t = 21.406; nTh = 0.9096 )

ǫ = 150 → (t = 21.058; nTh = 0.9087 )

ǫ = 200 → (t = 20.524; nTh = 0.9025 )One we have obtained the optimal values of t and nTh, we apply the algorithm to



78 5. Improving vessel segmentation using non-linear sale spaethe �rst 20 images of the DRIVE database to test its perfomane.The �rst two olumns of Table IV ontain the mean values and the standard devia-tions of the MAA, obtained by proessing the images of the test set. The parameters tand nTh are �xed at their optimal values for eah ase, onsidering ǫ = 10, 100, 150, 200.The values of MAA orresponding to the best (third olumn) and worst (fourth olumn)ases are also shown. The �fth and sixth olumns ontain the mean values of TPF andFPF, respetively, for the 20 images of the test set. In Figure 5.4, the segmented imagesorresponding to the best (�rst row) and worst (seond row) ases are provided for thetest set, for ǫ = 150 (orresponding to the best result) and for ǫ = 100 and ǫ = 200.The number of original images in the database is given.
Table IVTable 5.1: Mean values, standard deviations, best and worst ases, mean TPF and FPFfor ǫ = 10, 100, 150, 200 with t and nTh set to their optimal values for MAA.MAA Mean Standard Best ase Worst ase Mean Meandeviation TPF FPFwith ǫ = 10 0.94209 0.0074597 0.96104 0.92992 0.65478 0.010646with ǫ = 100 0.94327 0.0078334 0.96253 0.93009 0.65362 0.0095701with ǫ = 150 0.94329 0.0074413 0.96149 0.9324 0.64893 0.0091484with ǫ = 200 0.94320 0.0076326 0.96163 0.9306 0.64701 0.0094993

For the four onsidered values of ǫ, the results in Table IV suggest the presene of a(sub)optimal value ǫ = 150 whih gives us the best MAA = 0.94329. Compared withthe MAA = 0.94183, obtained with a linear sale spae, we have learly better results,even with a lower variane (0.00746 instead of 0.00822 in the previous ase).Moreover, for ǫ = 100 and ǫ = 200 the results seem to not vary too muh: on avisual inspetion the results are almost idential. The MAA orresponding to these twovalues are very lose to the one for ǫ = 150. We point out that the introdution of theperturbation in the gradient norm is not useless: for ǫ = 10 we an observe a lowerMAA due to a higher in�uene of the stairase e�et, however still having better resultsthan the linear ase.
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(a):19 (b):19 ():19

(d):3 (e):3 (f):3Figure 5.4: Best (�rst row) and worst (seond row) vessel extration results for the testset in terms of MAA for ǫ = 100 (a,d), ǫ = 150 (b,e), ǫ = 200 (,f). The databasenumbers of the original images are shown next to the labels.5.5 Simulation results with noisy imagesIn many real appliations, in the ourse of aquiring, transmitting, or proessing, digitalimages are perturbed by noise. The noise is usually desribed by its probabilisti model,e.g., gaussian noise is haraterized by two moments (mean and standard deviation ofa gaussian distribution of density of probability).Appliation-dependent, a degradation often yields a resulting signal/image observa-tion model, and the most ommonly used is the additive one:
IN (x, y) = I(x, y) + η(x, y) (5.22)where the observed image IN inludes the original signal I and the independent andidentially distributed (i.i.d) noise proess η.



80 5. Improving vessel segmentation using non-linear sale spae
The Total Variation Motion is designed to work with noisy images. We have deidedto test this multisale analysis using noisy fundus retina images of the DRIVE database,orrupted by Additive White Gaussian Noise (AWGN). This is a gaussian noise withzero mean haraterized by its standard deviation σnoise. It is modeled by an additivesheme like the one of Equation (5.22).In Figure 5.5 we an see two examples of noisy fundus retina images.

(a) (b) ()Figure 5.5: (a) Original image. (b) Noisy image, σnoise = 5. () Noisy image, σnoise =
10. We onsider two ases: σnoise = 5 and σnoise = 10. We ompare the results weobtain with the TVM based algorithm with the results we would have by using thealgorithm based on a linear multisale analysis. In any ase, we refer to the mean MAAvalue for the 20 images of the test set. The optimal sales and thresholds are �xed af-ter a training phase on the last 20 images of the database, orrupted with AWGN noise.Tables V and VI show the results for the two onsidered standard deviations σnoise,for di�erent values of the perturbation ǫ of the gradient norm.
Also in this ase, among the values of ǫ hosen to study the behaviour of our algo-rithm, the value ǫ = 150 gives the best result. Besides, for ǫ = 100 and ǫ = 200, theMAA don't vary too muh. In Figures 5.6 and 5.7 the segmented images orrespondingto the best (�rst row) and worst (seond row) ases are provided for the test set, for
ǫ = 100, 150, 200 and onsidering, respetively, the two ases σnoise = 5 and σnoise = 10.The number of original images in the database is given.



5.5 Simulation results with noisy images 81Table VTable 5.2: Noisy image results for TVM sale-spae based segmentation (noise AWGNwith σnoise = 5): mean values, standard deviations, best and worst ases, mean TPFand FPF for the MAA with t and nTh set to their optimal values.MAA Mean Standard Best ase Worst ase Mean Meandeviation TPF FPFwith ǫ = 10 0.93818 0.007082 0.09539 0.92420 0.64813 0.0128with ǫ = 100 0.94098 0.007169 0.95535 0.92773 0.65730 0.0115with ǫ = 150 0.94147 0.006826 0.95646 0.92867 0.65939 0.0113with ǫ = 200 0.94112 0.006774 0.95518 0.92852 0.65247 0.0109Table VITable 5.3: Noisy image results for TVM sale-spae based segmentation (noise AWGNwith σnoise = 10): Mean values, standard deviations, best and worst ases, mean TPFand FPF for the MAA with t and nTh set to their optimal values.MAA Mean Standard Best ase Worst ase Mean Meandeviation TPF FPFwith ǫ = 10 0.93416 0.00695 0.94903 0.92063 0.6285 0.0139with ǫ = 100 0.93808 0.00731 0.95227 0.92486 0.6234 0.0115with ǫ = 150 0.93822 0.00737 0.95448 0.92282 0.6314 0.0104with ǫ = 200 0.93810 0.00767 0.95385 0.92209 0.6218 0.0102To better understand the quality of the results, we present the MAA we would haveby using the linear multisale based segmentation. In Table VII the measures of theMAA using a linear sale-spae are reported for the same values of the noise standarddeviation as in Tables V and VI.From the omparison of the results reported in Table VII with the ones of Tables Vand VI, we an notie that the new algorithm works well also with noisy images, stillproviding better results than the linear ase.
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(a):19 (b):19 ():19

(d):3 (e):3 (f):3Figure 5.6: Best (�rst row) and worst (seond row) vessel extration results for thetest set in terms of MAA for ǫ = 100 (a,d), ǫ = 150 (b,e), ǫ = 200 (,f), onsidering
σnoise = 10. The database numbers of the original images are shown next to the labels.

Table VIITable 5.4: Noisy image results for linear sale-spae based segmentation (noise AWGNwith σnoise = 5 and σnoise = 10): Mean values, standard deviations, best and worstases, mean TPF and FPF for the MAA with t and nTh set to their optimal values.MAA Mean Standard Best ase Worst ase Mean Meandeviation TPF FPFwith σnoise = 5 0.93821 0.00786 0.95601 0.9252 0.6340 0.0118with σnoise = 10 0.93657 0.00778 0.95192 0.9218 0.5992 0.0107
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(a):19 (b):19 ():19

(d):3 (e):3 (f):3Figure 5.7: Best (�rst row) and worst (seond row) vessel extration results for thetest set in terms of MAA for ǫ = 100 (a,d), ǫ = 150 (b,e), ǫ = 200 (,f), onsidering
σnoise = 10. The database numbers of the original images are shown next to the labels.
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Chapter 6ConlusionIn this thesis we introdued a novel algorithm for the segmentation of the vessels infundus retina images. The algorithm has a modular struture and is made up of twofundamental bloks. The �rst is devoted to vessel enhanement involving multisale the-ory and sale-spae. Two ases are onsidered: linear sale-spae and edge-preservingnon-linear sale-spae based on Total Variation Motion. The seond blok provides abinary image by resorting both to a thresholding proedure and leaning operations.The multisale analysis framework is disussed in detail. At �rst we introdued themultisale analysis referred to an operator Tt applied to an image I(x, y). This was the�rst desription of a multisale analysis presented in the literature. Alvarez et al in [47℄gave an axiomati desription of the multisale properties and proved the relationshipbetween operator-based multisale analysis and PDEs. We used the Eulero-Lagrangeequations to link the di�usion PDE in the divergene form with the variational method.Then we derived the oriented 1D Laplaians form and we proved this result.We used our framework to prove or to dedue with a oherent formulation severalproperties of the multisale analysis (i.e. isotropi regularization, di�usion next to theedges of the image, uniqueness of the solution). For Total Variation Motion, we gave anovel haraterization of the e�ets related to the use of a perturbed norm. We provedthe mathematial framework that desribes the di�usion behaviour in proximity of theedges.To ahieve the vessel enhanement, we loated the ridges in the image by evaluatingthe eigenvalues of the Hessian matrix. The eigenvalues give us point to point infor-mations about the urvature along the prinipal diretion, i.e. the diretion on whihwe measure the maximum onvexity or onavity. This allows us to save omputationtime with respet to other methods. As a matter of fat, for example, the mathed�lter approah or the morphologial tehniques need kernels or struturing elements atdi�erent orientations, and repeat several times the same operations for eah diretion.85



86 6. ConlusionThe optimal values of the �sale� and �threshold� parameters of the algorithm werefound out by maximizing proper measures of performane (MOPs). We introduedsome MOPs to test the quality of our results and we ompared them with other meth-ods presented in the literature. The nonlinear algorithm outperforms the linear al-gorithm, working with both unorrupted and noisy retinal images. We showed thatfor unorrupted images the performanes of the proposed algorithms are lose to theones of well-known algorithm presented in the literature. At best of our knowledge, nomethods have been applied to noisy DRIVE database images until now, so no terms ofomparison are available.We disussed the in�uene that the MOPs have on the results. A researh topiould be the development of further MOPs able to highlight di�erent segmentation ap-pliations (i.e., auray on small vessels, vessels' widths, rami�ation of the vessels'tree).The algorithm is modular. The quality of the results may be improved by addingother proessing bloks. For istane, a proedure for removing pixels belonging to theedge of the opti disk ould be introdued. Another improvement for image showingsome pathology (e.g., drusen, exundates, and others) may be obtained by a blok forthe elimination of light objets before segmenting the vessels in pathologial images.The presene of a blok that eliminates these objets before vessel segmentation shouldoverome this drawbak.The modi�ed algorithm based on the non-linear sale-spae involves a new param-eter: the perturbation of the gradient norm ǫ. We showed that this is not a ritialparameter, unlike the sale and the threshold. Spei� studies, not faed in this thesis,an be developed to identify an analytial relationship beetween the geometrial har-ateristis of the image and an optimal value of this parameter. One an optimal valuefor this is identi�ed, the results are robust with respet to limited hanges of this value.Further studies an be developed to analyze in detail the quality of the results,respet to inreasing standard deviations of the gaussian noise and with salt and peppernoise or poissonian noise. It an be measured the di�erent rate of the degradation ofthe results between the two ases, linear and non-linear.



Appendix AFrom divergene form to oriented1D Laplaians formWe have have said that a PDE in the divergene form
∂I
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)

:= ∇ (g (‖∇I‖)∇I) (A.1)an be rewrittten using the oriented 1D Laplaians form
It = c1Izz + c2Ivv (A.2)provided that:1. c1 := g2. c2 := g + ‖∇I‖ g′3. z := ∇⊥I

‖∇I‖4. v := ∇I
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(A.4)By replaing (A.4) in (A.3), we obtain:
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) (A.5)We assume that our images are regular enough, so that Ixy = Iyx.By multiplying and dividing the right hand side (r.h.s.) of equation (A.5) by thesame quantity δ, we obtain:
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Appendix BExpliit expressions used toalulate the Q valueIn this Appendix we report the expliit expressions used to alulate the mean values,the varianes and the ovarianes of the images t and r at eah window position:
t̄(j, k) =

1
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