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Abstra
tAutomated segmentation of the vas
olature in retinal images is important in the de-te
tion of a number of eye diseases. Some diseases, e.g retinopathy of prematurity,a�e
t the morphology of the vessel tree itself. In other 
ases, e.g. pathologies likemi
roaneurysms, the performan
e of automati
 dete
tion methods may be improvedif regions 
ontaining vas
olature 
an be ex
luded from the analysis. Another impor-tant appli
ation of automati
 retinal vessel segmentation is in the registration of retinalimages of the same patient taken at di�erent times. Therefore the automati
 vessel seg-mentation forms an essential 
omponent of any automated eye-disease s
reening system.In this thesis an algorithm for the segmentation of the vessels in the images of thefundus of the human retina is developed. In the �rst 
hapter we introdu
e some nota-tions about the eye, the imaging te
hnology and the ar
hives of images. In the se
ond
hapter we show the state of art of the te
hniques proposed in the literature about vesselextra
tion. Sin
e retinal vessels have a range of di�erent sizes, it is a natural 
hoi
e theuse of an algorithm based on the multis
ale analysis, so in the third 
hapter we deal indetail with the multis
ale paradigm, and we dis
uss a mathemati
al framework to fa
ethis kind of problems using a di�erential and variational approa
h. In the fourth 
hapterwe talk about the algorithm developed to a
hieve the segmentation of the retinal ves-sels. The algorithm is modular and is made up of two fundamental blo
ks. The formeris devoted to vessel enhan
ement, using a linear multis
ale analysis for ridge dete
tion,the latter provides a binary image by resorting to both a thresholding pro
edure and
leaning operations. The optimal values of two algorithm parameters are found out bymaximizing proper measures of performan
es able to evaluate from a quantitative pointof view the results provided by the proposed algorithm. The 
hoi
e of the measure ofperforman
e allows one to tailor the solution to the spe
i�
 image features to be empha-sized. Some simulation results are presented and the performan
es of the algorithm are
ompared with those of other methods proposed in the literature. In the �fth 
hapterwe show the result improvements obtained using a nonlinear multis
ale analysis (TotalVariation Motion) instead of a linear te
hnique.
i
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Chapter 1Introdu
tionAutomated segmentation of the vas
olature in retinal images is important in the dete
-tion of a number of eye diseases. Some diseases, e.g retinopathy of prematurity, a�e
tthe morphology of the vessel tree itself. In other 
ases, e.g. pathologies like mi
roa-neurysms, the performan
e of automati
 dete
tion methods may be improved if regions
ontaining vas
olature 
an be ex
luded from the analysis. Another important appli
a-tion of automati
 retinal vessel segmentation is the registration of retinal images of thesame patient taken at di�erent times. The registered images are useful for automati
allymonitoring the progression of 
ertain diseases. Finally, the position, size and shape ofthe vas
olature provides information whi
h 
an be used to lo
ate the opti
 disk and thefovea. Therefore the automati
 vessel segmentation 
onstitutes an essential 
omponentof any automated eye-disease s
reening system.1.1 Anatomy of the eyeIn Figure 1.1 we 
an see a transverse se
tion of the left human eyeball: all the stru
turesof main interest are labelled.The outer layer of the eyeball is 
alled �brous tuni
 and it is 
omposed of the s
leraand 
ornea: the former provides shape and prote
ts inner parts, the latter admits andrefra
ts light. The middle 
oat of the eye is named vas
ular tuni
 and 
omprises: the
horoid, whi
h provides blood supply and absorbs s
attered light; the 
iliar body, whi
hse
rets aqueous humor and alters the shape of lens for near or far vision; the iris, whi
hregulates the amount of light that enters the eyeball.The inner layer is 
alled nervous tuni
 or retina: light enters the pupil (theaperture in the iris), is fo
used and inverted by the 
ornea and lens, and is proje
tedonto the retina. The retina is a soft, transparent layer of nervous tissue made up of3



4 1. Introdu
tion

Figure 1.1: A tranverse se
tion of the left eyeball (superior view)millions of light re
eptors.The retina is 
onne
ted to the brain by the opti
 nerve. All of the stru
tures neededto fo
us light onto the retina and to nourish it are housed in the eye, whi
h 
an be
onsidered, from this point of view, a supporting shell for the retina.Two separate vas
ular systems are involved in the nutrition of the eye. The �rst ismade up of the uveal, or 
iliary, blood vessels and supply the oxygen to the iris, the
iliary body and the 
horoid. It serves also in part the nervous tuni
, that owns afurther an autonomous vas
ular system, whose vessels are 
alled retinal vessels.The retinal vessels are distributed within the inner two thirds of the retina, whereasthe outer layers, in
luding the photore
eptors, are avas
ular and nourished from the
horoid. An avas
ular zone, whi
h enables light to rea
h the 
entral photore
eptorswithout en
ountering a single blood vessel, is seen 
entrally in the fovea. Arteries andveins are lo
ated within the nerve �ber layer. The 
apillaries are arranged in a lami-nated fashion with two layers of �at 
apillary networks in a large part of the retina.



1.2 Imaging Te
hniques 5
The retinal 
apillaries have a diameter of 5 - 6 µm [1℄. Retinal arterial diametersrange between 40 - 160 µm [2℄, 160 µm presumably refers to the 
entral artery. Thediameters of the superior temporal and inferior temporal bran
hes measures approxi-mately 120 µm [3℄.1.2 Imaging Te
hniquesTraditionally, the retina has been observed dire
tly via either an ophthalmos
ope orsimilar opti
al devi
es su
h as the fundus 
amera. Fundus photography (also knownas �retinal photography�) refers to a non-invasive te
hnique for the do
umentation ofthe posterior pole of the eye (retina and 
horoid) utilizing a 
olor �lm and a spe
ializedinstrument 
alled �fundus 
amera�. Fundus photography was �rst des
ribed by Ja
kmanand Webster in 1886, and modern fundus photography began with the introdu
tion of
ommer
ially available fundus 
ameras in 1926. In Figure 1.2 we have an example offundus image where the main stru
tures of the retina are pointed out.

Figure 1.2: An example of fundus imageThe term �red-free� refers to fundus photographs taken either using (a priori) agreen �lter (540 - 570 nm) over the light sour
e or extra
ting (a posteriori) from the



6 1. Introdu
tionoriginal 
olor images the green 
hannel, whi
h gives the highest 
ontrast between ves-sels and ba
kground [4℄. After the a
quisition, the images are digitized, thus be
omingavailable for 
omputer pro
essing.Other imaging te
hniques are 
ommonly used in medi
ine. In 1961 �uores
einangiography, or �uores
ent angiography, was developed by Novotny and Alvis [5℄. Inthis 
ase, sodium �uores
ein is inje
ted into a vein, and under �ltered light the sodium�uores
ein within the blood �uores
es, glowing brightly and providing easily observedpatterns of blood �ow within the eye. This allows the arteries, 
apillaries and veinsto be easily identi�ed and photographed, and from this, large amounts of information
on
erning the health of the 
ir
ulatory system 
an be determined. On
e the dye isadministered the speed with whi
h passages �ll with marked blood, the rate at whi
hthis marked blood spreads through the eye and the time taken for the dyed blood topass out of the eye are observed. These observations provide valuable data about thee�e
tiveness and degree of degeneration of the 
ir
ulatory system of the eye, whi
h hasbeen shown to be indi
ative of the 
ir
ulatory system of the entire body.During the 1990's the indo
yanine green dye angiography te
hnique was devel-oped; similarly to the �oures
ein angiography, a dye is inje
ted into the blood, howeverthe indo
yanine green dye glows in the infra-red se
tion of the spe
trum. The indo
ya-nine green dye approa
h only 
ame into widespread use when digital 
ameras sensitiveinto the infra-red be
ame 
ommonly available, and it 
omplements �uores
ein angiog-raphy by highlighting di�erent aspe
ts of the vas
olature of the eye. In parti
ular itenhan
es the stru
ture of the 
horoid, whi
h is the layer of blood vessels beneath theretina. These two te
hniques 
an be used together to gain a more thorough under-standing of the stru
ture and pathologies a�e
ting an eye. They 
an illustrate patternsof blood �ow, haemorraging and obstru
tions within the vas
ular system, but, like theophthalmos
ope, both require trained medi
al sta� to perform the pro
edure, and a
lini
al environment where the images 
an be taken and analysed.In addition to these methods for observing the vas
olature of the eye, there is avariety of other, more advan
ed, methods for mapping stru
tures and 
hanges withinthe eye, in
luding ultrasound and laser tomography and laser-based blood �owmeters indevelopment and in use. All of these 
an be used to s
an the eye and make observationsand diagnoses on the eye and 
ir
ulatory system.1.3 Ar
hives of retinal imagesSeveral ar
hives of digital fundus images are of publi
 domain. They all refer to proje
tsdevoted to develope systems for the automati
 diagnosis of the human eye diseases.



1.4 Mathemati
al de�nition of image 7
One of these ar
hives is the DRIVE (Digital Retinal Images for Vessel Extra
tion)database [6℄, that 
onsists of a total of 40 
olor fundus photographs. All images havebeen deidenti�ed, they were stripped from all individually identi�able information andpro
essed in su
h a way that this information 
annot be re
onstru
ted from the images.The photographs were obtained from a diabeti
 retinopathy s
reening program in TheNetherlands. The s
reening population 
onsisted of 453 subje
ts between 31 to 86 yearsof age. Ea
h image has been JPEG 
ompressed, whi
h is 
ommon pra
ti
e in s
reeningprograms. Among the 40 images in the database, 7 
ontain pathologies, namely exu-dates, hemorrhages and pigment epithelium 
hanges.The images were a
quired using a Canon CR5 non-mydriati
 3CCD 
amera with a45 degree �eld of view (FOV). Ea
h image is 
aptured using 8 bits per 
olor plane at768 × 584 pixels. The FOV of ea
h image is 
ir
ular with a diameter of approximately540 pixels.The set of 40 images was subdivided into a test and a training set both 
ontaining20 images. Five independent human observers manually segmented a number of im-ages. All observers were trained by an experien
ed ophthalmologist. The �rst observersegmented 14 images of the training set while the se
ond observer segmented the other6 images. The test set was segmented twi
e resulting in a set X and Y. Set X wassegmented by both the �rst and se
ond observer (13 and 7 images respe
tively) whileset Y was 
ompletely segmented by the third observer. The performan
e of the vesselsegmentation algorithms is measured on the test set. In set X the observers marked577,649 pixels as vessel and 3,960,494 as ba
kground (12.7% vessel). In set Y 556,532pixels are marked as vessel and 3,981,611 as ba
kground (12.3% vessel).1.4 Mathemati
al de�nition of imagesWe deal with digital image analysis, so we have to properly de�ne the notion of image.Nowadays, images on 
omputers are stored using dis
rete representation of the data butone generally assumes that the dis
retization is thin enough (in the spatial dire
tions)to be able to approximate these dis
rete signals by 
ontinuous (or at least pie
ewise
ontinuous) mathemati
al fun
tions. This is debatable and we refer the reader to [7, 8℄for interesting dis
ussions about this subje
t. Nevertheless, the possibility to apply
lassi
al mathemati
al tools as well as the good results obtained with 
ontinuous mod-els lead us to 
hoose this approa
h.Analiti
ally, a generi
 n-dimensional image 
an be de�ned as an adimensional 
on-tinuous fun
tion



8 1. Introdu
tion
I(x) : x ∈ Ω ⊂ ℜn → ℜm (1.1)where Ω is the image domain.Common values are n = 2 (2D or bidimensional images) and n = 3 (3D images).In the following of this thesis we will refer only to the bidimensional 
ase without loss ofgenerality: as a matter of fa
t, the results that we will obtain 
an be straightforwardlyextended to higher dimensional 
ases. If m = 1 we deal with mono
romati
 images.For 
olor images, we have m = 3. A 
ommonly used spa
e is RGB (Red, Green, Blue)
olor spa
e, but many other 
olor spa
es are widely used: for example HSV (Hue, Satu-ration, Lightness) or YUV spa
es (a model that de�nes the 
olor spa
e in terms of onebrightness and two 
hrominan
e 
omponents).We assume (working hypothesis) that Ω is a square domain; for n = 2 we have:

Ω ∈ [0, 1] × [0, 1] (1.2)For mono
romati
 images, I(x) 
an be physi
ally thought of as a fun
tion that asso-
iates a brightness level to any point P ≡ (x, y) ∈ Ω. This value is named gray level:high values represent bright regions of the image, low values 
orrespond to dark regions.Mathemati
ally, we 
an think of I(x, y) as a surfa
e in the ℜ3 spa
e (x, y, I), asillustrated in Figure 1.3

(a) (b)Figure 1.3: (a) the image I(x, y) (b) I(x, y) as surfa
e in a 3D spa
e.



1.5 Image derivatives 9We assume, moreover, that
I ∈ [0, 255] (1.3)This 
hoi
e allows us, after a quantization pro
ess, to represent the gray levels of a 
on-tinuous image with a 8-bit en
oding inside a 
omputer. Considering a generi
 Î ∈ [a, b],we 
an get ba
k the 
onventional range through the following relationship:

I =
Î − a

b − a
255 (1.4)A 
omputer 
an pro
ess only a numeri
al representation of an image, de�ned as amatrix MI of dimension M × N . Ea
h element of the matrix MI is representative ofthe 
onstant level of brightness of one subregion of the image (the pixel). Supposing touse an 8-bit en
oding, 256 possible values (from 0 to 255) are asso
iated to every pixel.We 
an pass from I(x) to MI , through an intermediate step, the dis
rete representation

DI . We divide the domain in many identi
al square dowels Ωi,j (in analogy with theregular disposition of the pixels in the image). A value of 
onstant brightness, obtainedby sampling I(x, y) in the 
enter of the dowel is asso
iated with every subdomain Ωi,jis asso
iated. What we have at this point is a matrix IM of real values, belongingto the interval [0,255℄. This is the dis
rete representation of an image. This is therepresentation used in analog 
ir
uits for image pro
essing, su
h as the so-
alled 
ellularNeural Networks (CNNs) [9℄.By quantizating the set of brightness values, instead, we obtain the matrix MI ofnatural values, belonging to the set {0,255}, that 
onstitutes the numeri
al repre-sentation of an image. This is the representation we have to use if we want to pro
essimages using a digital ar
hite
ture.1.5 Image derivativesThe derivative of an image I with respe
t to the variable a is written as follows
Ia =

∂I

∂a
(1.5)The derivatives of a s
alar image I with respe
t to its spatial 
oordinates (x, y) formthe image gradient and is denoted by ∇I

∇I = (Ix, Iy)
T (1.6)
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By varying (x, y) the image gradient des
ribes a ve
tor-valued �eld ∇I : Ω → ℜ2 rep-resenting the maximum variation dire
tions and magnitudes of the s
alar image I. Thegradient norm ‖∇I‖ =

√

I2
x + I2

y is often used in image analysis, sin
e it gives a s
alarand pointwise measure of the image variations, as shown in Figure 1.4.

(a) (b)Figure 1.4: (a) The image I(x, y) (b) Its gradient norm ‖∇I(x, y)‖.For dire
tional derivatives in a dire
tion u = (u, v)T ∈ ℜ2, we use the followingnotations:
Iu =

∂I

∂u = ∇Iu = uIx + vIy (1.7)In the same way, the se
ond derivative of a s
alar image I with respe
t to a and b isdenoted by
Iab =

∂2I

∂a∂b
(1.8)We de�ne the Hessian of I as the matrix H of the se
ond derivatives with respe
t tothe spatial 
oordinates:

H =

[

Ixx(x, y) Ixy(x, y)
Iyx(x, y) Iyy(x, y)

] (1.9)The matrix H will be largely used throughout this thesis. We assume that our images



1.6 Obje
tives 11are regular enough, so that Ixy = Iyx. Then, H is a symmetri
 matrix. As for se
-ond dire
tional-derivatives in a dire
tion u = (u, v)T ∈ ℜ2, the following notations areequivalent:
Iuu =

∂2I

∂u2
= ∇(∇Iu)u = uT Hu = trace(HuuT )

= u2Ixx + 2uvIxy + v2Iyy (1.10)A 
ommonly used operator involving the se
ond order derivatives is the Lapla
ian op-erator ∆, de�ned as follow:
∆I = trace(H) = Ixx + Iyy (1.11)1.6 Obje
tivesIn this thesis we use ar
hives of images to train an algorithm for the vessel segmentationof retinal fundus images.In this 
hapter, we introdu
ed some notations about the eye, the imaging te
hnologyand the ar
hives of images.In the se
ond 
hapter we show the state of the art of the te
hniques proposed in thes
ienti�
 literature 
on
erning vessel extra
tion.Sin
e retinal vessels have a range of di�erent sizes, it is a natural 
hoi
e the use of analgorithm based on the multis
ale analysis, so in the third 
hapter we deal in detailwith the multis
ale paradigm, and we dis
uss a mathemati
al framework to fa
e thismatters using a di�erential and variational approa
h.In the fourth 
hapter we talk about the algorithm developed to a
hieve the segmentationof retinal vessels. The algorithm is modular and is made up of two fundamental blo
ks.The former is devoted to vessel enhan
ement, using a linear multis
ale analysis for ridgedete
tion, while the latter provides a binary image by resorting to both a thresholdingpro
edure and 
leaning operations. The optimal values of two algorithm parametersare found out by maximizing proper measures of performan
es able to evaluate from aquantitative point of view the results provided by the proposed algorithm. The 
hoi
eof the measure of performan
e allows one to tailor the solution to the spe
i�
 imagefeatures to be emphasized. Some simulation results are presented and the performan
esof the algorithm are 
ompared with those of other methods proposed in the literature.In the �fth 
hapter we show the improvements of the results that obtain by using anonlinear multis
ale analysis (Total Variation Motion) instead of the linear one used inthe previous 
hapter.
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Chapter 2Vessel segmentationThe purpose of image segmentation is to partition an image into meaningful regionswith respe
t to a parti
ular appli
ation. Image segmentation has been, and still is, arelevant resear
h area and hundreds of segmentation algorithms have been proposed inthe last 30 years. Many segmentation methods are based on two basi
 properties ofthe pixels in relation to their lo
al neighbourhood: dis
ontinuity and similarity. Meth-ods based on pixel dis
ontinuity are 
alled boundary-based methods, whereas methodsbased on pixel similarity are 
alled region-based methods. However, it is well knownthat su
h segmentation te
hniques - based on boundary or region information alone -often fail to produ
e a

urate segmentation results [10℄. Hen
e, in the last few years,there has been a tenden
y towards algorithms whi
h take advantage of the 
omplemen-tary nature of su
h information.Reviewing the di�erent works on region-based segmentation whi
h have been pro-posed [11, 12℄, it is interesting to note the evolution of region-based segmentation meth-ods, whi
h were initially fo
used on grey-level images, and whi
h gradually in
orporated
olour, and more re
ently, texture. As a matter of fa
t we 
an think to extra
t fromthe image a map of the feature of interest and apply the segmentation task to this andnot to the original greys
ale image.This is a natural 
hoi
e if we want to segment parts of image that share a parti
ular ge-ometri
al pattern, like the vessels in fundus retina, whi
h 
an be identi�ed 
onsideringtheir tabular stru
ture, thinking a bidimensional image as a 3D surfa
e.2.1 State of the art in vessel extra
tion te
hniquesBlood vessel delineation on medi
al images forms an essential step in solving severalpra
ti
al appli
ations su
h as diagnosis of the vessels [13, 14, 15℄. It 
an be useful alsoas a preliminary step for registration of images of the same patient obtained at di�erenttimes. 13



14 2. Vessel segmentationThe segmentation task aims to isolate the stru
ture of interest of the fundus imagehighlighting them versus other regions of the image that are 
onsidered not important(e.g. vessels versus opti
 disk); moreover, the pro
essing of this kind of images 
anbe divided in two steps: the �rst one is the segmentation itself, the se
ond one is theextra
tion of parameters of interest from the segmented image (e.g. vessel diameter,number of o

lusions or haemorrhagies, et
.).The segmentation is then useful to pre-pro
ess in the best way the fundus image, try-ing to eliminate elements unne
essary in the further analyses and to highlight what isimportant in the spe
i�
 
ontext of the appli
ation.The vessel segmentation 
an be obtained by resorting to di�erent methods (see[14, 16℄ for an overview), either rule-based or supervised. In the latter 
ase, the rulefor the vessel extra
tion is �learned� by the algorithm on the basis of a training setof referen
e manually-pro
essed images. Various algorithms with a partial supervisionstrategy have been re
ently proposed [17, 18, 19℄.We don't enfor
e any taxonomy at the beginning of this 
hapter. Instead, we putinto the same group papers that use similar approa
hes. During the 
ategorizationthat follows in the next pages, we try to be as spe
i�
 as possible. In the following, asummary of vessel extra
tion te
hniques and algorithms is proposed:1. Pattern re
ognition te
hniques;(a) Mat
hing �lters approa
hes(b) Ridge-based approa
hes(
) Region growing approa
hes(d) Multi-s
ale approa
hes(e) Skeleton-based approa
hes(f) Mathemati
al morphology s
hemes2. Deformable models(a) A
tive 
ontours (Snakes)(b) Level set methods3. Tra
king-based approa
hes4. Arti�
ial-intelligen
e-based approa
hes5. Neural-network-based approa
hes6. Wavelets



2.2 Pattern re
ognition te
hniques 152.2 Pattern re
ognition te
hniquesPattern re
ognition (PR) te
hniques deal with the dete
tion or 
lassi�
ation of obje
tsor features. Humans are very well adapted to 
arry out PR tasks. Some of the PRte
hniques are the adaptation of human PR ability to the 
omputer systems. In thevessel extra
tion domain, PR te
hniques are 
on
erned with the automati
al dete
tionof vessel stru
tures and features.2.2.1 Mat
hing �lters approa
hesMat
hing �lters approa
h 
onvolves the image with multiple mat
hed �lters for theextra
tion of obje
ts of interest. In extra
ting vessel 
ontours, designing di�erent �ltersto dete
t the vessels with di�erent orientations and sizes plays a 
ru
ial role [20℄. The
onvolution kernel size a�e
ts the 
omputational weight. Mat
hing �lters are usuallyfollowed by some other image pro
essing operations like thresholding and 
onne
ted
omponent analysis to get the �nal vessel 
ontours. Conne
ted 
omponent analysis ispre
eded by a thinning pro
ess to dete
t vessel 
enterlines.

Figure 2.1: Example of �lter that enhan
es all the patterns oriented like the arrowThe mat
hed �lter method has some parameters governing its dete
tion pro
ess. The
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(a) (b)Figure 2.2: (a) A red-free image. (b) Elaboration result using mat
hing �lters.values of mat
hed �lter parameters were proposed in [20℄ and have been used sin
e thenin all other works for appli
ations and 
omparisons. In [4℄ a method is proposed toimprove the thresholding (and hen
e the segmentation) of the mat
hed �lter outputimage but the mat
hed �lter parameters are never 
hanged. Only in [18℄ an optimiza-tion method using the DRIVE [6℄ database to adjust the mat
hed �lter parameters toin
rease the performan
es is presented. The optimization pro
edure is performed by
omparing ea
h edge dete
ted image to the referen
e hand-labeled image to obtain the�lter parameters.2.2.2 Ridge-based approa
hesRidge-based methods treat grays
ale images as 3D elevation maps in whi
h intensityridges, whi
h 
oin
ide approximately with vessel 
enterlines, approximate the skeletonof the tubular obje
ts [21℄. After 
reating the intensity map, ridge points are lo
alpeaks in the dire
tion of maximal surfa
e gradient, and 
an be obtained by tra
ing theintensity map from an arbitrary point, along the steepest as
ent dire
tion. Ridges areinvariant to a�ne transformations and 
an be dete
ted in di�erent image modalities.These properties are exploited in medi
al image registration [22, 23℄.In [14℄ an algorithm based on the extra
tion of image ridges is dis
ussed. The ridgesare used to 
ompose primitives in the form of line elements. An image is partitioned bythe line elements into pat
hes by assigning ea
h image pixel to the 
losest line element.Every line element 
onstitutes a lo
al 
oordinate frame for its 
orresponding pat
h. Forevery pixel, feature ve
tors are 
omputed that make use of properties of the pat
hesand line elements. The feature ve
tors are 
lassi�ed using a NN-
lassi�er and sequen-tial forward feature sele
tion. The algorithm is trained and tested using the DRIVE [6℄



2.2 Pattern re
ognition te
hniques 17database.2.2.3 Region growing approa
hesStarting from some seed point, region growing te
hniques segment images by in
re-mentally re
ruiting pixels to a region, on the basis of some prede�ned 
riteria. Twoimportant segmentation 
riteria are value similarity and spatial proximity [24℄. It isassumed that pixels that are 
lose to ea
h other and have similar intensity values arelikely to belong to the same obje
t. The main disadvantage of region growing approa
his that it often requires user-supplied seed points. Due to the variations in image in-tensities and noise, region growing 
an result in holes and over-segmentation. Thus, itrequires post-pro
essing of the segmentation result.2.2.4 Multi-s
ale approa
hesMulti-s
ale approa
hes perform segmentation at various image resolutions. The mainadvantage of this te
hnique is its high pro
essing speed. Major stru
tures (large vesselsin our appli
ation domain) are extra
ted from low resolution images while �ne stru
-tures are extra
ted at high resolution. Another advantage is the high robustness. Aftersegmenting the thi
k stru
tures at the low resolution, small stru
tures, su
h as bran
hes,in the neighborhood of the strong stru
tures 
an be segmented at higher resolution.M. E. Martinez-Perez et al. [25, 15℄ propose a blood vessels segmentation algorithmbased on a multi-s
ale analysis. Two geometri
al features based on the �rst and these
ond derivative of the intensity image, maximum gradient and prin
ipal 
urvature, areobtained at di�erent s
ales by means of Gaussian derivative operators. A multiple passregion growing pro
edure is used, whi
h progressively segments the blood vessels usingthe feature information together with spatial information about the eight-neighboringpixels. The algorithm works with red-free as well as �uores
ein retinal images.2.2.5 Skeleton-based approa
hesSkeleton-based methods extra
t blood vessel 
enterlines. The vessel tree is 
reated by
onne
ting these 
enterlines. Di�erent approa
hes are used to extra
t the 
enterlinestru
ture. Some of these methods are: (i) thresholding and then obje
t 
onne
tivity,(ii) thresholding followed by a thinning pro
edure, and (iii) extra
tion based on graphdes
ription.
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al morphology s
hemesMorphology relates to the study of obje
t shapes. Morphologi
al operators (MO) applystru
turing elements (SE) to images, and are typi
ally applied to binary images but
an be extended to gray-level images. Dilation and erosion are the two main MO.Dilation expands obje
ts by a SE, �lling holes and 
onne
ting disjoint regions. Erosionshrinks obje
ts by a SE. Closing, dilation followed by erosion, and opening, erosionfollowed by dilation, are two further operations. Two algorithms used in medi
al im-age segmentation and related to mathemati
al morphology are top hat and watershedtransformations. [26℄.In [27℄, F. Zana and J. C. Klein present an algorithm that 
ombines morphologi
al�lters and 
ross-
urvature evaluation to segment vessel-like patterns. Blood vessel pat-terns in retinal fundus images are bright features de�ned by morphologi
al properties:linearity, 
onne
tivity and 
urvature of vessels varying smoothly along the 
rest line.On the basis, mathemati
al morphology is used to highlight vessels with respe
t to theirmorphologi
al properties. However, other patterns �t su
h a morphologi
al des
ription.In order to di�erentiate vessels from analogous ba
kground patterns, a 
ross-
urvatureevaluation is performed. Vessels are dete
ted as the only features whose 
urvature islinearly 
oherent. The dete
tion algorithm that derives dire
tly from this modeling isbased on four steps: 1) noise redu
tion; 2) linear pattern with Gaussian-like pro�leimprovement; 3) 
ross-
urvature evaluation; 4) linear �ltering. The algorithm has beentested on retinal photographs of three di�erent types: �uoroangiography, gray imagesobtained with a green �lter, and 
olor images with no �lter. O

asionally a short pre-pro
essing step is ne
essary, sin
e the algorithm only works with bright patterns in graylevel images.2.3 Model-based approa
hesWe divide deformable models into two 
ategories: parametri
 deformable models andgeometri
 deformable models. These 
ategories are dis
ussed in detail in the next se
-tions.2.3.1 A
tive 
ontours (Snakes)Deformable models are model-based te
hniques that �nd obje
t 
ontours using para-metri
 
urves, whi
h deform under the in�uen
e of internal and external for
es. Firstintrodu
ed by Kass, Witkin, and Terzopoulos in 1987 [28℄, a
tive 
ontour models or



2.3 Deformable models 19snakes are a spe
ial 
ase of a more general te
hnique of mat
hing a deformable modelby means of energy minimization. Physi
ally, a snake is a set of 
ontrol points, 
alledsnaxels, in an image that are 
onne
ted to ea
h other. Ea
h snaxel has an asso
iatedenergy that either rises or falls depending upon the for
es that a
t on it. These for
esare known as snake's internal and external for
es, respe
tively. Internal for
es serveto impose smoothness 
onstraints on the 
ontour while external for
es pull the snaketowards the desired image features like lines and edges. We 
an represent the snakeparametri
ally by v(s) = (x (s) , y (s)), where x(s) and y(s) are 
oordinate fun
tionsand s ∈ [0, 1]. The snake's total energy is:
Esnake =

∫ 1

0
Fsnake (v (s)) ds (2.1)The smoothness 
onstraint imposed by elasti
ity energy makes the deformable modelsrobust to noise. The main disadvantage is that usually it requires user intera
tion toinitialize the snake. It also requires initial parameters given by the user. Automati
snake initialization is an a
tive ongoing resear
h topi
 [29, 30℄.In [19℄ a system inspired to the 
lassi
al snakes but in
orporating spe
i�
 domainknowledge, su
h as blood vessels topologi
al properties, is developed. This approa
htakes advantage also from the automati
 lo
alization of the opti
 dis
 and from theextra
tion and enhan
ement of the vas
ular tree 
enterlines. The method a
hieves en-
ouraging results in the dete
tion of arteriovenous stru
tures. The systems performan
eis evaluated on the publi
 DRIVE database.2.3.2 Level set methodsCaselles et al. [29℄ and Malladi et al. [31℄ use the Level Set Method (LSM) approa
hdeveloped by Osher and Sethian [32℄ and adapt it to shape re
ognition to model anatom-i
al patterns. The main idea behind the Level Set Method is to represent propagating
urves as the zero level set of a higher dimensional fun
tion whi
h is given in the Eu-lerian 
oordinate system. Hen
e, a moving front is 
aptured impli
itly by the level setfun
tion (LSF). The advantages of this approa
h are:1. It 
an handle 
omplex interfa
es whi
h develop sharp 
orners and 
hange theirtopologies during the development;2. Intrinsi
 properties of the propagating front su
h as the 
urvature and normal tothe 
urve 
an be easily extra
ted from the level set fun
tion;3. Sin
e the level set fun
tion is given in the Eulerian 
oordinate system, dis
retegrids 
an be used together with �nite di�eren
es methods to obtain a numeri
alapproximation to the solution;



20 2. Vessel segmentation4. It is easily extendable to higher dimensions.2.4 Tra
king-based approa
hesPattern re
ognition approa
hes apply lo
al operators to the whole image. These meth-ods require the pro
essing of every image pixel and numerous operations per pixel.This 
an be very time expensive. On the other hand, tra
king-based approa
hes workby �rst lo
ating an initial point and then exploiting lo
al image properties to tra
ethe vas
olature re
ursively. They only pro
ess pixels 
lose to the vas
olature, avoidingthe pro
essing of every image pixel, and so are appropriately also 
alled �exploratoryalgorithms�. They have several properties that make them attra
tive for real-time high-resolution pro
essing, sin
e they s
ale well with image size, 
an provide useful partialresults, and are highly adaptive while being e�
ient.

Figure 2.3: Example of segmented images using a tra
king algorithm: the three imagesrefer to results obtained using an in
reasing number of seeds (from (a) to (
)): we 
anappre
iate the in
reasing number of extra
ted vessels.Vessel tra
king approa
hes dete
t vessel 
enterlines or boundaries by analyzing the pix-els orthogonal to the tra
king dire
tion. Di�erent methods are employed in determiningvessel 
ontours or 
enterlines. Edge dete
tion operation followed by sequential tra
ingby in
orporating 
onne
tivity information is a straightforward approa
h. Aylward et al.in [22℄ utilize intensity ridges to approximate the medial axes of tubular obje
ts su
has vessels. Some appli
ations a
hieve sequential 
ontour tra
ing by in
orporating intothe next step the features, su
h as vessel 
entral point and sear
h dire
tion, dete
tedin previous steps [33℄. Fuzzy 
lustering is another approa
h to identify vessel segments.It uses linguisti
 des
riptions like �vessel� and �nonvessel� to tra
k vessels in retinal an-giogram images. After the initial segmentation, a fuzzy tra
king algorithm is applied toea
h 
andidate vessel region. Some methods utilize a model in the tra
king pro
ess andin
rementally segment the vessels. A more sophisti
ated approa
h to vessel tra
kingis the use of graph representation [34℄. The segmentation pro
ess is, then, redu
ed to



2.5 Arti�
ial intelligen
e-based approa
hes 21�nding the optimum path in a graph representation of the image. A disadvantage ofthe vessel tra
king approa
hes is that they are not fully automati
 and require userintervention for sele
ting starting and end points.We 
an distinguish three di�erent ways to apply the tra
king te
hnique to a
hievevessel segmentation [35℄:
• The initial and �nal points of the vessel (and sometimes also the dire
tion and thethi
kness) are manually inserted. Although these algorithms are very a

urate,they are not suitable for the automati
 real-time elaboration of fundus retinaimages sin
e they need manual inputs and high pro
essing times.
• The initial point and the dire
tion of the vessel are manually inserted; then thealgorithm tra
es re
ursively the vessel following its pro�le inside the image. Thefa
t that the vessels are not ne
essarily 
onne
ted in fundus images makes thismethod poorly e�
ient.
• The algorithm extra
ts in a 
ompletely automati
 way the vessel network; a pre-liminary phase of analysis allows to set a bun
h of seed points from whi
h to beginthe elaboration, that 
onsists in the sear
h of the vessel dire
tion and its thi
knessthanks to the appli
ation of a series of �lters. In detail, su
h �lters are a set ofbidimensional 
orrelation kernels that work as:1. low-pass di�erentiator �lters along the dire
tion perpendi
ular to the vessel.2. low-pass �lter along the vessel itself; they uniform the grey level of the pix-els belonging to a 
ertain set (de�ned by the size of the kernel) to their mean value.2.5 Arti�
ial intelligen
e-based approa
hesArti�
ial Intelligen
e-based approa
hes (AIBA) utilize knowledge to guide the segmen-tation pro
ess and to extra
t vessel stru
tures. Di�erent types of knowledge are em-ployed in di�erent systems from various sour
es. Possible knowledge sour
es are theproperties of the image a
quisition te
hnique, su
h as 
ine-angiography, digital sub-tra
tion angiography (DSA), 
omputed tomography (CT), magneti
 resonan
e imaging(MRI), and magneti
 resonan
e angiography (MRA). Some appli
ations utilize a generalblood vessel model as a knowledge sour
e. Smets et al. [36℄ en
ode general knowledgeabout appearan
e of blood vessels in the form of 11 rules (e.g., vessels have high in-tensity 
enter lines, 
omprise high intensity regions bordered by parallel edges, et
.).Stans�eld [37℄ applies a domain-dependent knowledge of anatomy to interpret 
ardia
angiograms in the high-level stages. A

ording to Stans�eld, �Anatomi
al knowledge is



22 2. Vessel segmentationembodied within the system in the form of spatial relations between obje
ts and theexpe
ted 
hara
teristi
s of the obje
ts themselves�. Knowledge-based systems exploita priori knowledge of the anatomi
al stru
ture. These systems employ some low-levelimage pro
essing algorithms, su
h as thresholding, thinning, and linking, while guidingthe segmentation pro
ess using high-level knowledge. AIBA performs well in terms ofa

ura
y, but the 
omputational 
omplexity is mu
h higher than for other methods.2.6 Neural network-based approa
hesNeural networks are used to simulate biologi
al learning and are widely used in patternre
ognition. Neural nets implement basi
ally a 
lassi�
ation approa
h. The network isa 
olle
tion of elementary pro
essor (nodes). Ea
h node takes a number of inputs, per-forms elementary 
omputations, and generates a single output. Ea
h node is assigneda weight and the output is a fun
tion of weighted sum of the inputs. These weights arelearned through training and then used in the re
ognition.Ba
k-propagation algorithm is a widely used learning algorithm. One problem as-so
iated to learning is that learning depends on the training data set. The size of thetraining data set a�e
ts the learning pro
ess. The training pro
edure should be re-run ea
h time new training data is added to the set. Sin
e the aforementioned neuralnetworks require a training data set, the learning pro
ess is a supervised learning. Adi�erent 
lass of neural networks are self-tea
hing and do not depend on training dataset for the learning. The best known of these 
lass of neural networks is Kohonen fea-ture maps or [38℄ self-organizing networks. Interested readers are referred to [39, 40℄,and Haykin [41℄ for more information on neural networks.In medi
al imaging, neural networks are mainly used as a 
lassi�
ation methodwhere the system is trained with a set of medi
al images and the target image is seg-mented using the trained system. One of the advantages that make neural networksattra
tive in medi
al image segmentation is their ability to use nonlinear 
lassi�
ationboundaries obtained during the training of the network. One of the disadvantages isthat they need to train every time a new feature is introdu
ed. Another limitation isthe di�
ulty of debugging the performan
e of the network.2.7 WaveletsTo in
rease the 
ontrast between the ba
kground and the areas of the image with high-est variations of the grey levels (e.g. the areas 
orresponding to the blood vessels) it
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i�
 transformations to the image itself. An easy one is theso 
alled Haar transform, that is a
tually an averaging and di�eren
ing operation. Itoperates by transforming a 1×N array of values into a 1×N array of results. The �rst
[1...N/2] elements of the array are the averages of pairs of the [1...N ] original elements,and the following [N/2 + 1...N ] elements in the array are the detail elements from the
[1...N ] original elements. For the �rst pair of elements in the initial array, [x1, x2, ...],the �rst element in the result array is (x1 +x2)/2, and the 
orresponding detail elementat position N/2 is (x1 +x2)/2−x1. As the average element is equidistant from both x1and x2, to restore the initial array we simply subtra
t the detail element from the aver-age element (this gives us x1) and add the detail element from the average, to restore x2.For 2-dimensional images the transform operation is performed on all rows of theimage and then again on all 
olumns of the output from the �rst appli
ation of thetransform. In the typi
al transform applied to images using standard inverted 
artesiangeometry, the average elements are stored in the top left quadrant of the input imageand detail elements stored in the remaining 3 quadrants of the image. The average ele-ments from the top left 
orner are then pro
essed in the same way as the entire imagewas to begin with, to perform the se
ond level of the transform. This pro
ess 
an berepeated as many times as desired, ea
h time further redu
ing the size and resolutionof the output image. Figure 2.4 sket
hes the way how the Haar transform works, whilean example is given in Figure 2.5.

Figure 2.4: Haar transform applied to ve
tors and matrixes: the two ve
tors at the leftrepresent the appli
ation of the Haar transformation on row ve
tors and 
olumn ve
tors(average elements in red, detail elements in green). At the right, the transformationof a matrix NxN is represented, �rst by row, then by 
olumns of the matrix resultingfrom the �rst phase of the transform. The 
olors point out the type and the order ofthe result. We get so a matrix NxN that 
ontains four images, every of dimension N/2x N/2, ea
h one being the result of a di�erent transformation of the original image.
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(a) (b)Figure 2.5: An example of appli
ation of the Haar transform to a typi
al fundus retinaimage.In [42℄ a method for automated segmentation of the vas
olature in retinal images is pre-sented. The method produ
es segmentations by 
lassifying ea
h image pixel as vessel ornonvessel, based on a pixel's feature ve
tor. Feature ve
tors are 
omposed of the pixel'sintensity and two-dimensional wavelet transform outputs taken at multiple s
ales. Thewavelet is 
apable of tuning to spe
i�
 frequen
ies, thus allowing noise �ltering andvessel enhan
ement in a single step. A Bayesian 
lassi�er is used with 
lass-
onditionalprobability density fun
tions (likelihoods) des
ribed as Gaussian mixtures, yielding afast 
lassi�
ation, while being able to model 
omplex de
ision surfa
es. The probabilitydistributions are estimated on the basis of a training set of labeled pixels obtained fromthe manual segmentations stored in the DRIVE databases.



Chapter 3The multis
ale analysisIn this thesis we develope a novel algorithm for vessel segmentation in fundus retina im-ages. The algorithm is modular and is made up of two fundamental blo
ks. The formeris devoted to vessel enhan
ement involving �multis
ale theory�. Two 
ases are studied:linear multis
ale and an edge-preserving non-linear multis
ale. In this 
hapter we dealwith the multis
ale paradigm and we introdu
e a proper mathemati
al framework basedon both a di�erential and a variational approa
h. In the last part of this 
hapter we usethis framework to better understand some general properties of the multis
ale analysis.In the next two 
hapters we will use the knowledges introdu
ed in this 
hapter to 
larifythe behaviour of the multis
ale 
ases that will be introdu
ed.As outlined in the previous 
hapters, 
omputer-based analysis for automated seg-mentation of blood vessels in retinal images helps eye 
are spe
ialists to s
reen largepopulations for vessel abnormalities. The width of retinal vessels 
an vary from verylarge to very small. This property of retinal images makes a 
ompletely automatedvessel segmentation very di�
ult. Multis
ale te
hniques have been developed to isolateinformation about obje
ts in an image by looking for geometri
 features at di�erents
ales, i.e. with di�erent sizes [43℄.Within this framework, we pass from the original image to smoothed versions, whi
hstill 
ontain signi�
ant information. The main parameter of this preliminary transformis the �s
ale�, a general parameter whi
h measures the degree of smoothing, or moretrivially, the size of the neighbourhoods whi
h are used to give an estimate of the bright-ness of the pi
ture at a given point. The so-
alled �multis
ale analysis� tends to giveless lo
al and therefore more reliable information on the grey level than the original�u
tuating �pixel�.If we want to extra
t a parti
ular feature from an image, su
h as the vessels, weapply the feature dete
tor at all s
ales, and then sele
t the s
ale 
orresponding to lo
almaxima, with respe
t to the s
ales, of measures of the feature strength. Lindeberg in[44℄ has shown empiri
ally that for a tube-like feature as a vessel, a lo
al maximum 
an25
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ale analysisbe found at the s
ale 
orresponding to vessel width.Mathemati
ally, we de�ne without loss of generality the �s
ale spa
e� of an image
I(x, y) for a �multis
ale analysis� Tt the sequen
e of pi
tures I(x, y, t) = (TtI) (x, y)that we obtain by applying the operator Tt to I. The operator Tt depend only onone parameter t. For example, if we 
onsider the 
lassi
al multis
ale analysis due tothe 
onvolution of an image I with gaussian kernels with di�erent standard deviations σ

I(x, y;σ) = (TσI)(x, y) = Gσ ∗ I (3.1)with
Gσ = G(x, y;σ) =

1

2πσ2
e−

x2
+y2

2σ2 (3.2)in this 
ase we have t ≡ σ. In other 
ases, if we refer to a multis
ale analysis modeledby a di�usion Partial Di�erential Equation (PDE), the parameter t 
orresponds to thedi�usion time.Roughly speaking, TtI 
an be thought as a semi-lo
al version of I where a neighbour-hood of size t around (x, y) has been exploited for determining the value of I(x, y, t).If Tt is a linear operator, we have linear multis
ale analysis, otherwise we havenon-linear multis
ale analysis. An example of image at a 
ertain s
ale in shown inFigure 3.1.

(a) (b)Figure 3.1: (a) The image I(x, y) (b) The same image at a 
ertain s
ale.
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ale analysis 27We said that multis
ale analysis is useful in vessel extra
tion tasks. Di�erent algo-rithms have been proposed in the literature about this topi
 (see for istan
e [15, 45, 46℄).In the next two 
hapters we will des
ribe vessel enhan
ement algorithms based on thiskind of analysis. In this 
hapter we detail the multis
ale approa
h introdu
ing someproperties or axioms. Then we show how, by satisfying these axioms, every sequen
e ofpi
tures I(x, y, t) = (TtI) (x, y) 
an be related to the solution of a se
ond order PDE:
∂I

∂t
= F (∇I,H(I)) (3.3)where ∇I is the image gradient and H(I) the Hessian matrix (see Se
tion 1.5).In the literature, the �rst des
ription of a multis
ale analysis referred to an operator

Tt and to linear s
ale spa
es. Alvarez et al in [47℄ gave an axiomati
 des
ription of themultis
ale properties and proved the relationship between operator-based multis
aleanalysis and PDEs, as introdu
ed with Equation (3.3).The results introdu
ed in the �rst part of this 
hapter are valid for generi
 PDEs.In the se
ond part of this 
hapter, we deal only with the so 
alled diver
enge form, aparti
ular di�usion equation also used in image pro
essing. This equation allows us toestablish a link between the di�erential form and the variational form. We will de�nethe mathemati
al framework for a variational des
ription of multis
ale analysis.We rewrite then the equations given in the divergen
e form using an equivalent for-mulation, known as oriented 1D Lapla
ians form, whi
h allows us to easily point outsome 
hara
teristi
s of the di�usion equation we are going to work with.3.1 Axioms of multis
ale analysisAlvarez et al in [47℄ introdu
ed an axiomati
 framework for the use of PDE in multis
aleanalysis models. In parti
ular they formally stated and proved that PDEs are asso
iatedto multis
ale analysis operators Tt whi
h satisfy a series of formal properties, or axioms.An overview of these axioms is presented in this se
tion. We introdu
e and brie�ydes
ribe them, without the aim of being exhaustive. The �rst six axioms (strong andweak 
ausality, 
omparison prin
iple, grey-level-shift invarian
e, grey-s
ale invarian
eand translation invarian
e) state some desiderable properties from the vision theorypoint of view. The last three axioms (generator, regularity, lo
ality) refer to stri
tlymathemati
al properties. They are ne
essary in [47℄ to demonstrate the relationshipbetween operators Tt and PDEs.
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ale analysis3.1.1 CausalityWe �rst 
onsider an axiom, whi
h in vision theory is 
alled �
ausality� property, or�pyramidal ar
hite
ture� property. This axioms states that Tt 
an be 
omputed from
Ts for any s ≤ t, and T0 is the identity. This is natural, sin
e a 
oarser analysis of theoriginal pi
ture is likely to be dedu
ed from a �ner one without any dependen
e uponthe original pi
ture. Of 
ourse, the �nest pi
ture analysis is the identity.A strong version of this property is:[Strong 
ausality℄ T0(I) = I, Ts ◦ Tt(I) = Ts+t(I) on ℜ2, for all s, t ≥ 0 and I.If [Strong 
ausality℄ is satis�ed, the visual pro
ess is redu
ed to a single loop, if thes
ales are dis
retized. Indeed, Tt is equivalent to the n-th iteration of T t

n
. A weakerversion of the pyramidal ar
hite
ture hypothesis is the following: we in
lude Tt = Tt,0in a family of transition operators Ts,t indexed by 0 ≤ s, t < ∞ and satisfying[Weak 
ausality℄ Tt+s = Tt+s,s ◦ Ts for all 0 ≤ s, t < ∞.In order to get ba
k to [Strong 
ausality℄, one needs to assume that Tt+s,s = Tt,0.From the viewpoint of the theory of per
eption, 
ausality in general is a 
oherent hy-pothesis, if the image per
eptual analysis 
onsists in a sequen
e of �lters whi
h areapplied sequentially. Sin
e new images are 
onstantly arriving at the retina, the image-analysis pro
ess is thought of as a �ow of the pi
ture through di�erent �lters, ea
hasso
iated with a s
ale t.3.1.2 Comparison prin
ipleThe 
omparison prin
iple is an obvious order-preserving property (the �maximum prin-
iple�). It means that no enhan
ement is made, but just a smoothing of the originalimage. Thus if one image G is everywhere brighter than another image I, this orderingis preserved by the operator Tt[Comparison prin
iple℄ Tt(I) ≤ Tt(G) on ℜ2 for all t ≥ 0 and I, G su
h that I ≤ G.This axiom is equivalent, in the 
ase where Tt is a linear �lter de�ned by TtI = I ∗Ft, tothe inequality Ft ≥ 0. Thus, this axiom is the nonlinear generalization of a nonnegativesmoothing kernel.



3.1 Axioms of multis
ale analysis 293.1.3 Grey s
ale invarian
eThis axiom and the next one are 
alled the �morphologi
al axioms� and are well-knownin mathemati
al morphology. They state that image analysis must be invariant under�u
tuations of light and under 
hanges of position, orientation and s
ale of the planarshapes.In the 
ase of digital pi
tures, many ele
troni
 devi
es are applied su

essively to animage before its arrival at the human eye or at some automati
 image-analysis devi
e:sin
e the grey s
ale of the resulting image has been 
hanged by ea
h devi
e, the onlysound assumption about the information-preserving properties of the whole 
hain of
aptors and transmittors is that they might preserve the order of grey levels. In otherterms, if some point or some region was brighter than an another in the original pi
ture,this order should be preserved in the �nal pi
ture.We begin by stating that the image analysis must be independent of the (arbitrary)grey-level s
ale. In the following, we shall always assume the following weak form ofthis axiom:[Grey-level-shift invarian
e℄ Tt(0) = 0, Tt(I + C) = Tt(I) + C for any I and any
onstant C.This axiom means that no a priori assumption is made about the range of brightnessof a pi
ture to be observed. Of 
ourse, this is not absolutely true for natural or arti�-
ial photosensitive systems. It is however true that the interpretation of a photographis widely independent of its exposure time: the photograph 
an be dark or light andyet be identi�ed as essentially the same pi
ture. This axiom is equivalent, in the 
asewhere Tt is a linear �lter de�ned by TtI = I ∗Ft, to the requirement that ∫ Ft(x) dx = 1.The strong form of the �rst morphologi
al axiom is[Grey-s
ale invarian
e℄ Tt (h(I)) = h (Tt(I)) for all I and all t ≥ 0, where h is anynonde
reasing real fun
tion.The fun
tion h is simply an order-preserving rearrangement of the grey levels. Noti
ethat the se
ond relation of [Grey-level-shift invarian
e℄ is a parti
ular 
ase of [Grey-s
aleinvarian
e℄.3.1.4 Translation invarian
eNow we introdu
e an axiom whi
h states that all points of the spa
e are a priori equiv-alent:
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[Translation invarian
e℄ Tt

(

τh · I
)

= τh (Tt · I) for all h in ℜ2, t ≥ 0, where
(

τh · I
)

(x, y) = I (x + h1, y + h2).In other words, there is no a priori knowledge about lo
ation of any feature of thepi
ture.3.1.5 Regularity, Lo
ality and GeneratorWe present three stri
tly mathemati
al properties. These axioms are ne
essary 
ondi-tion in the demonstration of the relationship between the operators Tt and PDEs. Weshortly introdu
e them without the aim of being exhaustive, for more details pleaserefer to [47℄.We de�ne, the so 
alled in�nitesimal generator A for the operator Tt as the followinglimit, provided that it exists:[Generator℄ (TtI − I)/t → A[I] uniformly on ℜN , as t → 0+ for smooth I.A way of justifying [Generator℄ is to dedu
e it from axioms more natural from theviewpoint of per
eption. An example of su
h an axiom, whi
h, 
ombined with theother axioms of the theory, implies [Generator℄ is[Regularity℄ ‖Tt(I + hG) − (Tt(I) + hG)‖∞ ≤ Cht for all h, t in [0, 1], for smooth
I and G, where of 
ourse C depends on I and G.This last axiom states a natural assumption of 
ontinuity of Tt and is therefore a strongjusti�
ation for the existen
e of an in�nitesimal generator for the multis
ale analysis.We next require an axiom on the lo
al 
hara
ter of the multis
ale analysis Tt for t small(and therefore the lo
al 
hara
ter of the in�nitesimal generator A):[Lo
ality℄ {Tt(I) − Tt(G)} (x) = o(t) as t → 0+, for all smoth I and G su
h that
DαI(x, y) = DαG(x, y) for all |α| ≥ 0 and for all x.where Dα denotes every measure asso
iated with a derivative of α-th order. For exam-ple, if α = 1, we 
an have DαI = ∂I

∂x
or DαI = ∂I

∂y
or DαI = ‖∇I‖. Roughly speaking,this last axiom means that the value of Tt(I) for t small, at any point x, is determinedby the behaviour of I near x.



3.2 Di�erential form of regular multis
ale analysis operators 313.2 Di�erential form of regular multis
ale analysis opera-torsNow we introdu
e an important result that allows us to express the 
ommonly usedmultis
ale analysis in a di�erent way: we will report a theorem, proved in [47℄, statingthat the main multis
ale image pro
essing models 
an be related to paraboli
 partialdi�erential equations (PDEs) of order 2.First of all, it has been proved that if Tt is a multis
ale analysis that satisfy the �ar-
hite
tural� 
onditions [Strong 
ausality℄, [Regularity℄, [Lo
ality℄, together with [Com-parison prin
iple℄, and the morphologi
al 
onditions [Translation invarian
e℄ and [Grey-level-shift invarian
e℄, then there exists a �generator� A for that operator TtThen, 
onsidering the previous axioms and also [Lo
ality℄, it has been proved thatthere exists a 
ontinuous fun
tion F su
h that, for any given pi
ture I, I(x, y, t) = TtIsatis�es
∂I

∂t
= F (∇I,H(I)) (3.4)where F is the in�nitesimal generator for Tt (i.e. we have F (∇I,H(I)) ≡ A[I]).Conversely, any partial di�erential equation of the kind of Equation (3.4)
orresponds to a multis
ale analysis satisfying the above mentioned axioms.To better understand the in�uen
e of ea
h axiom on the result, we show what wouldhappen if we relax some of the axioms ne
essary for Equation (3.4). For example, ifinstead of the [Strong 
ausality℄, we have the [Weak 
ausality℄, and the obvious adapta-tion of the other axioms to Tt,s, the same result has been proved with a time-dependent

F :
∂I

∂t
= F (∇I,H(I), t) (3.5)Moreover, for example, if we remove [Translation invarian
e℄, the equation be
omesspa
e-dependent, and F has the form

∂I

∂t
= F (∇I,H(I), x) (3.6)Noti
e that, in the same way, a dependen
e of F on I, su
h as
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ale analysis
∂I

∂t
= F (∇I,H(I), I, t) (3.7)only 
ontradi
ts [Grey-level-shift invarian
e℄.We remark that now the �time� t is the s
ale parameter: larger values of t lead tosimpler representations. A

ording to the framework de�ned above we 
an observe thatmultis
ale analysis realizes (in general) a nonlinear di�usion �ltering: the image issimpli�ed step by step and its variations are minimized. In the literature this simpli�-
ation pro
ess of a given image is 
alled regularization.3.2.1 The divergen
e formDuring the last two de
ades, nonlinear di�usion �lters have be
ome a powerful andwell-founded tool in multis
ale image analysis. Many papers have appeared proposingdi�erent models, investigating their theorethi
al foundations, and des
ribing interest-ing appli
ations. We fo
us on approa
hes in divergen
e form, a parti
ular 
ase ofEquation (3.4). In parti
ular, this form is interesting sin
e will allow us to establishin the next se
tion a link between the di�erential form and an alternative variationalde�nition of a similar problem.We have referred to a given image I(x, y) 
alling I(x, y, t) the s
ale spa
e relatedto it. For the sake of 
larity in the following we rename the original image I(x, y) as

I0(x, y) to more 
learly distinguish this from I(x, y, t). From now on, we will be inter-ested in regularization due to partial di�erential equation of the 
lass:
∂I

∂t
= ∇ (g (‖∇I‖)∇I) (3.8)on Ω×(0,∞) with the original image as initial state and homogeneous Neumann bound-ary 
onditions:

I(x, y, 0) = I0(x, y) on Ω (3.9)
∂I

∂n = 0 on ∂Ω × (0,∞) (3.10)where n denotes the normal to the image boundary ∂Ω.
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ale analysis operators 33The fun
tion g (‖∇I‖) is 
ommonly 
alled di�usivity. It is a not-in
reasing posi-tive fun
tion, that basi
ally, in the non linear 
ase, 
hara
terizes the di�usion behaviourby blurring low-
ontrast regions mu
h more than high-
ontrast lo
ations (the edge ofthe image). The fun
tion ‖∇I‖ g (‖∇I‖) is 
alled �ux. For reasons that will be 
learonly in Se
tion 3.4, we have to 
hoose the fun
tion g so that to have a non-negative�ux for every value ‖∇I‖.For su
h a 
lass of equations the following properties 
an be established:1. (Well-posedness and smooth results)There exists a unique solution I(x, y, t) in C∞ (Ω × (0,∞)) and it depends 
on-tinuously on I0(x, y) with respe
t to the L2(Ω) norm.2. (Average grey level invarian
e)The average grey level of the original image
µ :=

1

|Ω|

∫

ω

I0(x, y) dxdy (3.11)is not a�e
ted by non linear di�usion �ltering:
1

|Ω|

∫

ω

I(x, y, t) dxdy = µ (3.12)for all t > 03. (Convergen
e to a 
onstant steady state)
limt→∞ I(x, y, t) = µ in Lp(Ω), 1 ≤ p < ∞The existen
e, uniqueness and regularity is proved in [48℄, the other results areproved in [49℄.Continuous dependen
e of the solution on the initial image is of signi�
ant pra
ti
alimportan
e, sin
e it guarantees stability under perturbations. This is relevant when
onsidering stereo images, image sequen
es or sli
es from medi
al CT (Computed To-mography) or MR (Magneti
 Resonan
e) sequen
es, sin
e we know that similar imagesremain similar after �ltering.Average grey level invarian
e is a property whi
h distinguishes nonlinear di�usion�ltering from other PDE-based image pro
essing te
hniques, su
h as mean 
urvaturemotion [50℄. The latter is not in divergen
e form and, thus, 
an not be 
onservative.Average grey level invarian
e is required in some segmentation algorithms su
h as the
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ale analysisHypersta
k [51℄.The third property tells us that, for t → ∞, di�usion �ltering tends to a 
onstantimage with the same average grey level of I0.3.3 The variational formVariational methods 
onstitute an interesting alternative to nonlinear di�usion �lters.The idea behind regularization with variational methods is the following. Image reg-ularization 
an be done by minimizing energy fun
tionals measuring the global imagevariations. The a
knowledged aim is to suppress low image variations mainly due tonoise, while preserving the high ones representing the image 
ontours. Typi
al varia-tional methods for image regularization (su
h as [52, 53, 54, 55, 56℄) provide a �lteredversion of some given image I0 as the minimizer I∗ of
E (I(x, y; τ)) =

∫

Ω
Ψ(I, Ix, Iy) dxdy

=

∫

Ω
Ψ1 + τΨ2 dxdy

=

∫

Ω
(I − I0)

2 + τΦ (‖∇I (x, y)‖) dxdy (3.13)where Φ(s) : ℜ → ℜ is an in
reasing 
onvex fun
tion for s > 0 (Φ′ ≥ 0 and Φ′′ ≥ 0).So we want to �nd the fun
tion I∗(x, y; τ) that minimizes Equation (3.13):
E (I∗) = min

I
E (I) (3.14)The �rst term Ψ1 in the integral is 
ommonly 
alled �delity term and en
ourages sim-ilarity between the regularized image and the original one, while the se
ond term Ψ2is named regularization term and rewards smoothness, i.e. penalizes the presen
e ofedges in the image. The smoothness weight τ > 0 is 
alled regularization parameter.For this 
lass of regularization methods one 
an establish a similar well-posednessand s
ale-spa
e framework as for nonlinear di�usion �ltering, if one 
onsiders the regu-larization parameter τ > 0 as s
ale. In [57℄ the following properties have been proved:1. (Well-posedness and regularity)



3.3 The variational form 35Let I0 ∈ L∞(Ω). Then the fun
tional Equation (3.13) has a unique minimizer
I∗ in the Sobolev spa
e H1(Ω). Moreover, I∗ ∈ H2(Ω) and ‖I∗‖L2(Ω) depends
ontinuously on τ2. (Average grey level invarian
e)The average grey level

µ :=
1

|Ω|

∫

ω

I0(x, y) dxdy (3.15)remains 
onstant under regularization:
1

|Ω|

∫

ω

I∗(x, y; τ) dxdy = µ (3.16)for all τ > 03. (Convergen
e to a 
onstant image for τ → ∞)
limτ→∞ ‖I∗(x, y; τ) − µ‖Lp(Ω) for any 1 ≤ p < ∞Let us now give an intuitive reason for this large amount of stru
tural similaritiesbetween di�usion �lters and regularization methods.3.3.1 The Euler-Lagrange equationsFinding the fun
tion I∗ that minimizes the fun
tional E(I) is not a trivial problem.Nevertheless, the Euler-Lagrange equations give a ne
essary 
ondition that must beful�lled by I∗(x, y; τ) to rea
h a minimum of E(I).Let us de�ne a fun
tion F:

F =
∂

∂I

[

(I − I0)
2
]

− τ
∂

∂x

∂Φ

∂Ix

− τ
∂

∂y

∂Φ

∂Iy

(3.17)The solution of the variational problem 
an be found out solving
F = 0 (3.18)We 
al
ulate now more expli
ity ea
h term of F :1.

∂

∂I
(I − I0)

2 = 2(I − I0) (3.19)
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ale analysis2.
∂

∂x

∂Φ

∂Ix
= τ

∂

∂x

∂Φ(‖∇I (x, y)‖)
∂ ‖∇I (x, y)‖

∂ ‖∇I (x, y)‖
∂Ix

= τ
∂

∂x

[

Φ′ Ix
√

I2
x + I2

x

] (3.20)3.
∂

∂y

∂Φ

∂Iy
= τ

∂

∂y

∂Φ(‖∇I (x, y)‖)
∂ ‖∇I (x, y)‖

∂ ‖∇I (x, y)‖
∂Iy

= τ
∂

∂y



Φ′ Iy
√

I2
y + I2

y



 (3.21)Con
luding, we have:
F = 2(I − I0) − τ

∂

∂x

[

Φ′

‖∇I‖∇Ix

]

− τ
∂

∂y

[

Φ′

‖∇I‖∇Iy

]

= 2(I − I0) − τ∇
(

Φ′

‖∇I‖∇I

) (3.22)On the basis of this results we 
an introdu
e a link between the divergen
e and thevariational form, as explained in the next se
tion.3.3.2 Link between variational and divergen
e formWe have seen that the solution of a variational problem 
an be obtained by solving
F = 0 (3.23)that 
an be rewritten as follows:

(I − I0)

τ
=

1

2
∇
(

Φ′

‖∇I‖∇I

) (3.24)This 
an be thought of as a fully impli
it time dis
retization of the di�usion �lter
∂I

∂t
=

1

2
∇ (g (‖∇I‖)∇I) (3.25)
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with a time dis
retization step of size τ and

g (‖∇I‖) ≡ Φ′

‖∇I‖ (3.26)One may thus regard our well-posedness and multis
ale framework for regularizationmethods as a dis
rete-time framework for di�usion �ltering, estabilishing a tight rela-tionship between I(x, y, τ) and I(x, y, t) [58℄; in other words, we 
an write:
I(x, y; τ) ∼= I(x, y, t) (3.27)Moreover, to avoid the dire
t and di�
ult solution of Equation (3.22), a 
lassi
 iterativemethod is used: the gradient des
ent. A
tually, Equation (3.22) 
an be 
onsidered asthe gradient of the fun
tional E(I). Starting from I0 as initial 
ondition and followingthe opposite dire
tion of this gradient leads to a lo
al minimizer I∗∗ of E:






I(t=0) = I0

∂I
∂t

= −F

(3.28)Note that this PDE evolution has been parameterized with an (arti�
ial) time variablet. It des
ribes the 
ontinuous progression of the fun
tion I until it minimizes E(I). Thenthe PDE speed vanishes: ∂I/∂t = 0.For t → ∞ I tends to a steady state I∗∗ that is a lo
al minimizer of E(I). It hasbeen proved that if Φ is a 
onvex fun
tion, we have only one minimum and then theminimum obtained in this way is the global one (I∗∗ ≡ I∗). More in the general, if Φ isnot 
onvex, the starting point I0 must be 
arefully 
hosen, ideally near the global min-imum of the fun
tional E(I). Choosing di�erent initializations I0 may lead to di�erentresults (di�erent lo
al minima).Con
luding, the Euler-Lagrange equations make the link between di�erential formand variational form (through Equation (3.26)) in image regularization. Generally, wewill be more interested in the gradient des
ent itself than in the fun
tional minimiza-tion, and we will often use the term PDE �ow to des
ribe su
h evolutions. The readeris referred to [59℄ for an exhaustive theory about the 
al
ulus of variations.
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ale analysis3.4 The oriented 1D Lapla
ians formThe PDEs in the divergen
e form are widely used in the literature and are useful if wewant to work with a framework stri
tly related to equivalent variational formulations,but don't give us dire
t information about the di�usion behaviour. We 
an more di-re
tly understand it if we rearrange the di�usion equations we have 
onsidered until nowin a new equivalent form, 
alled oriented 1D Lapla
ians form. In other words weare interested in establishing a further 
orresponden
e between the previous de�nitionof a di�erential image pro
essing problem in the divergen
e form
∂I

∂t
= ∇

(

Φ′
‖∇I‖∇I

)

:= ∇ (g (‖∇I‖)∇I) (3.29)and the following equation:
∂I

∂t
= c1Izz + c2Ivv (3.30)being Idd the se
ond derivative of I along the generi
 dire
tion d = [dx, dy]

Idd :=
(dT

H
)d (3.31)and H the Hessian matrix.This is the so 
alled oriented 1D Lapla
ians form, that was �rstly introdu
ed todes
ribe the behaviour of the Perona-Malik di�usion equation [60, 61℄. Roughly speak-ing, Equation (3.30) 
an be interpreted as the sum of two 
oexistent and oriented �heat�ows� (re
alling a sound analogy with the heat equation ∂I/∂t = ∇2I = Ixx +Iyy) thatsmooth the image along the dire
tions z and v, respe
tively, by weighing the two �owswith 
oe�
ients the c1 and c2.In our 
ase, Equation (3.29) is equivalent to Equation (3.30) if:1. c1 := g2. c2 := g + ‖∇I‖ g′3. z := ∇⊥I

‖∇I‖4. v := ∇I
‖∇I‖In Appendix A we show the proof of this result.
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ians form 39The unit ve
tors z and v 
orrespond respe
tively to the dire
tions orthogonal andparallel to the gradient. Note that z is everywhere tangent to the isolevel lines I(x, y) =
a (for every �xed t) of the 
ontours in the image. The set (z,v) is then a moving or-thonomal basis whose 
on�guration depends on the 
urrent point 
oordinate x = (x, y)(Figure 3.2)

Figure 3.2: An image 
ontour and its moving ve
tor basis (z,v)In 
on
lusion, the values (z,v, c1, c2) de�ne the lo
al geometry of the di�usion pro-
ess. In the next subse
tion we will use the oriented 1D Lapla
ians form to mathemati-
ally 
hara
terize some properties of the di�usion a

ording to the framework des
ribedto now.3.4.1 Link between variational and oriented 1d Lapla
ians formSin
e it exists a link between the variational form and the divergen
e form and a linkbetween the divergen
e form and the oriented 1D Lapla
ians form, we 
an establisha dire
t link between the variational form and the oriented 1D Lapla
ians form. Inparti
ular, this will allow us to understand why at the beginning of Se
tion 3.3 wehave imposed to the regularization term of the fun
tional Equation (3.13) to be 
onvex.Moreover it will allow us to understand why we have imposed to the �ux asso
iated tothe PDE in the divergen
e form to be non-negative.Starting from the de�nitions of c1 and c2 introdu
ed in the previous se
tion and
onsidering Equation (3.26) we have:
c1 = g =

1

2

Φ′

‖∇I‖
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c2 = g + δg′ =

1

2

Φ′

‖∇I‖ +
1

2
‖∇I‖

[

∂

∂ ‖∇I‖

(

Φ′

‖∇I‖

)]

=
1

2

Φ′

‖∇I‖ +
1

2
‖∇I‖

[‖∇I‖Φ′′ − Φ′

‖∇I‖2

]

=
1

2
Φ′′ (3.32)These results point out the link between the variational representation (introdu
ed withEquation (3.13)) and the oriented 1D Lapla
ians one.These results are useful to �x up the 
onditions that let us to avoid inverse di�u-sion, an unstable pro
ess that enhan
es image features, and among these the noise. Ifit happens, no uniqueness of the solution and no stability of the pro
ess 
an be expe
ted.We do not have inverse di�usion when:1. c1 ≥ 0 ⇒ Φ′ ≥ 02. c2 ≥ 0 ⇒ Φ′′ ≥ 0The spe
i�ed equivalen
ies hold by 
onsidering the range δ = ‖∇I‖ > 0.To avoid inverse di�usion the fun
tion Φ(δ) has to be monotoni
ally in
reasing and
onvex, a

ording to what stated at the beginning of Se
tion 3.3. Moreover, sin
e

Φ′ = δg(δ), we have also to impose that the �ux should be non-negative, a

ording towhat stated in Se
tion 3.2.13.4.2 About isotropi
 di�usionCon
luding, we want to show expli
itly under whi
h 
onditions we have the so 
alledisotropi
 di�usion. A di�usion is named �isotropi
� if
c1 = c2 (3.33)Considering the already known results

c1 := g

c2 := g + ‖∇I‖ g′ (3.34)
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then Equation (3.33) is equivalent to

g = g + ‖∇I‖ g′

⇒ g′ = 0

⇒ g = K ∀K ∈ ℜ+ (3.35)In this 
ase the magnitude of K has e�e
t only on the speed of the di�usion but noton its nature. We 
an set K = 1 without loss of generality. Then, a

ording to Equa-tion (3.8), the only PDE 
orresponding to an isotropi
 di�usion is:
∂I

∂t
= ∇(1∇) = ∇2I (3.36)This the so 
alled heat equation, that will be re
alled in the next 
hapter. All the otherkinds of PDEs, in the divergen
e form, known in the literature realize the so 
alledanisotropi
 di�usion.Please note that in this thesis, we will use the term anisotropi
 as the opposite ofisotropi
, to designate a regularization pro
ess that does not smooth the image withthe same weight in all the spatial dire
tions. In the literature, some authors have dif-ferent de�nitions. For instan
e, Wei
kert [49℄ introdu
es the notions of homogeneousand inhomogeneous �ltering, as well as di�erent de�nitions for the terms isotropi
 andanisotropi
.
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Chapter 4A supervised vessel segmentationalgorithm using linear s
ale spa
eBlood vessels 
an be viewed as tube-like stru
tures of di�erent widths, lenghts and ori-entations. To dete
t this kind of stru
tures in a fundus retina image, we must sear
hfor the geometri
al feature that des
ribes them at best, �nding the s
ale that gives usthe more a

urate results. The vessel extra
tion 
an be obtained by resorting to dif-ferent methods (see Chapter 2 for an overview), either rule-based or supervised. In thelatter 
ase, the rule for the vessel extra
tion is �learned� by the algorithm on the basisof a training set of referen
e manually-pro
essed images. An algorithm with a partialsupervision strategy has been re
ently proposed [17℄.In this 
hapter, we propose a modular supervised algorithm for the segmentationof retinal blood vessels on M × N red-free images. The algorithm performs two mainoperations, vessel enhan
ement and image binarization (plus 
leaning), and it has twomain 
hara
teristi
s:
• �exibility, due to its supervised nature
• modularity.If we 
onsider a red-free image I(x, y) as a surfa
e in a 3D spa
e (x, y, I), we 
anrepresent fundus retina image as shown in Figure 4.1 (detail).If we fo
us our attention on a se
tion of the surfa
e in the dire
tion orthogonal to avessel, we have lo
ally a 
onvex 
urve. This will be the basi
 idea used in the �rst partof our algorithm to a
hieve the vessel enhan
ement.Usually, all the parameters in algorithms for image pro
essing are heuristi
ally �xeda priori. In other 
ases, some parameters are �xed by using optimization pro
edures[18℄. In this 
hapter we determine two �optimal� signi�
ant parameters by properly43



44 4. A supervised vessel segmentation algorithm

Figure 4.1: On the left: detail of a generi
 fundus image. On the right: the same 
ropin a 3D representation.maximizing some Measures Of Performan
es (MOPs) for the algorithm applied to atraining set. This makes the algorithm supervised.The optimization pro
edure our supervised approa
h is based on makes this algo-rithm suitable for di�erent purposes. Indeed, the results depend on the 
hosen MOPand di�erent MOPs 
an be used to highlight di�erent features in the pro
essed images.This �exibility 
ombines with a modular stru
ture of the algorithm, resulting in quiteshort 
omputation times. As a matter of fa
t, the two main pro
essing blo
ks are madeup, in turn, of sub-blo
ks, thus making the algorithm highly modular, with the pos-sibility of applying only a subset of the possible pro
essing operations. Most of thesub-blo
ks, moreover, 
an be implemented by enhan
ing either the pro
essing a

ura
yor the simpli
ity. In the latter 
ase, one redu
es the quality of the results in favor oflower 
omplexity and 
omputation times [62℄.We realize vessel enhan
ement through s
ale-spa
e a

ording to the multis
ale anal-ysis theory and the most 
riti
al parameter in this part of the algorithm is the s
alefa
tor. The image binarization is based on a simple thresholding pro
edure and themost 
riti
al parameter in this part of the algorithm is the threshold. Generally speak-
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ks the algorithm is made up of are not new. The main novelty elementsare
• the use of optimization pro
edures (supervised, being applied to an image databasewith referen
e images) to determine two �optimal� parameters (s
ale fa
tor andthreshold);
• the 
ombination of the sub-blo
ks to produ
e an a

urate result as a trade-o�between pro
essing quality and 
omputation 
omplexity.The obtained results are 
ompared with those of other methods proposed in theliterature.In parti
ular, using the 20 images of the DRIVE (Digital Retinal Images for VesselExtra
tion, see Se
tion 1.3) database test set, we obtain a mean value of 0.9419 for theMaximum Average A

ura
y and a mean value of 0.7286 for the agreement betweentwo observers (K-value). The preliminary optimization step 
an take several minutes,but on
e the �optimal� parameters are obtained, ea
h segmentation of a fundus imagerequires only few se
onds. Then this algorithm represents a good trade-o� betweena

ura
y of the results and 
omputational 
omplexity.In Se
tion 4.1 we present the algorithm. It involves a linear multis
ale analysis, in-trodu
ed by using the mathemati
al framework dis
ussed in the previous 
hapter. Afterthe image binarization, we want to determine the value of the �optimal� parameters: theused MOPs are summarized in Se
tion 4.2, while the target fun
tion whi
h is used todetermine the optimal parameters' values is de�ned in Se
tion 4.3. In Se
tion 4.4 someresults are presented and 
ommented and the algorithm performan
es are dis
ussed.Some 
on
luding remarks are drawn in Se
tion 4.5.4.1 The algorithmThe algorithm is made up of two fundamental blo
ks (see the dashed boxes in Fig-ure 4.2), exhibiting in turn a modular stru
ture. The �rst blo
k performs a preliminary
ontrast enhan
ement (to 
ompensate the di�erent illumination 
onditions of fundusimages) and is devoted to vessel enhan
ement, while the se
ond one provides a binaryimage by resorting to both a thresholding pro
edure and some 
leaning operations.Of 
ourse, ea
h blo
k may be repla
ed by other (modular) algorithms. For instan
e,for the �rst blo
k one 
an resort to a multi-s
ale method for retinal image 
ontrastenhan
ement based on the Contourlet transform [63℄ or to an algorithm for luminosityand 
ontrast normalization [64℄.
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Figure 4.2: Blo
k s
heme of the algorithm. The grey elements are related to the super-vised training algorithm that determines a priori the �optimal� parameters σ and nTh.On
e these parameters are �xed, the pro
essing algorithm redu
es to the bla
k part ofthe s
heme.4.1.1 Contrast enhan
ement pre-pro
essingTo 
ompensate the e�e
ts of a non uniform lighting, 
ommon in this kind of imagesand due to 
hanging 
onditions during the a
quisition pro
ess, a pre-pro
essing of theimages has to be done. To this end, we use the fun
tion ADAPTHISTEQ, 
ontainedin the Image Pro
essing Matlabr Toolbox, whi
h performs a Contrast-Limited Adap-tive Histogram Equalization (CLAHE) [65, 66℄.The CLAHE algorithm operates on small regions in the image, 
alled tiles, ratherthan on the entire image. Ea
h tile's 
ontrast is enhan
ed, so that the histogram of theoutput region approximately mat
hes a uniform histogram. The neighboring tiles arethen 
ombined using bilinear interpolation to eliminate arti�
ially indu
ed boundaries.The 
ontrast, espe
ially in homogeneous areas, 
an be limited to avoid amplifying anynoise that might be present in the image.We 
all I0(x, y) the image that we obtain after the 
ontrast enhan
ement. In Fig-ure 4.3 an example is shown.4.1.2 Vessel enhan
ementTo perform the vessel enhan
ement, we adopt the method introdu
ed in [67℄ and [68℄and then used in [15℄ to pro
ess two-dimensional fundus images. The vessel enhan
e-ment pro
edure, devoted to highlight geometri
 tube-like stru
tures, is based on theHessian operator H of the fun
tion I(x, y;σ).
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(a) (b)Figure 4.3: Example of 
ontrast enhan
ement. (a) Original image. (b) Enhan
ed imageThe linear s
ale-spa
eWe 
all I(x, y;σ) the s
ale-spa
e due to a linear multis
ale analysis and then a lineardi�usion of the image to be pro
essed I0(x, y). As pointed out in Se
tion 3.4, lin-ear di�usion is an isotropi
 di�usion and then realizes an isotropi
 regularization.It represents the easier way to smooth and simplify data and has 
onsequently beenrea
hed by several mathemati
al formulations: from the restoration s
heme proposedby Tikhonov in [69℄ to the 
lassi
 linear �ltering of images (for istan
e in the Fourierspe
tral spa
e [70℄), the proposed methods lead to the same regularization behaviour.We use I0(x, y), the enhan
ed fundus retina image, to start our elaboration. Usingthe framework introdu
ed in the previous 
hapter we 
an give a variational formulationof this problem:
E (I(x, y;σ)) =

∫

Ω
(I − I0)

2 + σ ‖∇I(x, y)‖2 dxdy

=

∫

Ω
(I − I0)

2 + σ

(

(

∂I(x, y)

∂x

)2

+

(

∂I(x, y)

∂y

)2
)

dxdy (4.1)where, with respe
t to Equation (3.13), in this 
ase we have
Φ(s) = s2 → Φ(‖∇I‖) = ‖∇I‖2 (4.2)



48 4. A supervised vessel segmentation algorithm
By remembering the link between the variational form and the di�erential one, ex-pressed in Equation (3.26), we 
an 
al
ulate:

g(‖∇I‖) =
1

2

Φ′

‖∇I‖ =
1

2

2 ‖∇I‖
‖∇I‖ = 1 (4.3)Now, we are able to formulate the same problem by using the divergen
e form:

∂I

∂t
= ∇(∇I) = ∆I =

∂2I

∂x2
+

∂2I

∂y2
(4.4)and by using I0 as initial 
ondition. We have obtained the well known heat equation,used in physi
s, for istan
e, to des
ribe heat �ows through solids. As shown in theprevious 
hapter only linear multis
ale realizes an isotropi
 di�usion.Koenderink noti
ed in [71℄ that the solution of Equation (4.4) at a parti
ular time

t is the 
onvolution of the original image I0 with a normalized 2D Gaussian kernel Gσof standard deviation σ =
√

2t:
I(x, y;σ) = (TσI0)(x, y) = Gσ ∗ I0 (4.5)In a more expli
it notation:

I(x, y;σ) =

∫ ∫

I0(x − u, y − v)Gσ(u, v) dudv (4.6)with
Gσ = G(x, y;σ) =

1

2πσ2
e−

x2
+y2

2σ2 (4.7)This means that the regularization is linear (based on a 
onvolution). The regulariza-tion behavior is then typi
al of a linear multis
ale analysis: the signal is blurred littleby little in an isotropi
 way during the PDE evolution (see Figure 4.4).Note that 
onvolving an image by a Gaussian kernel is equivalent to multiply theFourier transform of this image by another Gaussian kernel: the isotropi
 regularizationbehaves then as a low-pass �lter suppressing high frequen
ies in the image I.Unfortunately, image 
ontours are high frequen
y signals as well as noise. As illus-trated in Figure 4.5, they are qui
kly blurred by su
h an isotropi
 s
heme. The needto resort to more 
omplex non-linear and anisotropi
 regularization methods qui
klyappeares (in parti
ular for noise removal image restoration purposes). Nevertheless, a
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(a) (b)

(
) (d)

(e) (f)Figure 4.4: Example of linear s
ale-spa
e: σ2 = 2, 4, 8, 16, 32, 64.
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ale analysis maybe enough for our segmentation task, keeping theglobal implementation very simple. Moreover, in the next 
hapter we will investigatethe improvements in the quality of the results that we obtain by using a non linearmultis
ale analysis.Evaluation of the Hessian matrix and its eigenvaluesWe have now to evaluate the Hessian matrix along the s
ales and then the se
ond orderspatial derivatives of I0. We have shown that Gaussian kernel is the s
ale-spa
e operatorat the basis of the linear multis
ale analysis. There is an important additional result:the spatial derivatives of the Gaussian kernel are also solutions of the heat di�usionequation, and, together with the zeroth-order Gaussian (see Equation (4.7)), they forma 
omplete family of di�erential operators [72℄.Sin
e we may 
ommute the di�erential and the 
onvolution operators
∂

∂x
(I0 ∗ Gσ) = I0 ∗

∂G

∂x
(4.8)the derivative of I0 
an be found by 
onvolving the image with the derivative of a Gaus-sian. This is true for derivatives of any order.Then, the Hessian matrix of I0 ∗ G 
an be expressed as follows:

H(I0(x, y) ∗ G(x, y;σ)) =

[

Lxx(x, y;σ) Lxy(x, y;σ)
Lyx(x, y;σ) Lyy(x, y;σ)

] (4.9)where
Lαβ(x, y;σ) = I0(x, y) ∗ ∂G(x, y;σ)

∂αβ
, α, β ∈ {x, y} (4.10)For a given value of the s
ale parameter σ, the eigenvalues λ± of the Hessian matrix

H measure the 
onvexity of I0 ∗ G in the 
orresponding eigendire
tions [21℄. At ea
hpoint (x, y;σ), the eigenvalue with the maximum absolute value is denoted as Λ(x, y;σ)and the 
orresponding eigenve
tor is parallel to the dire
tion of maximum 
urvature ofthe grey level. In the 
onsidered red-free images, a high positive 
urvature marks thepresen
e of ridges in the low-pass �ltered surfa
e I ∗ G, i.e., the presen
e of vessels inthe image. Then, the pro
essed image 
an be obtained as follows:
Ĩ(x, y;σ) = max (0,Λ(x, y;σ)) (4.11)
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(a) (b)

(
) (d)

(e) (f)Figure 4.5: Contours of a fundus image along a linear s
ale-spa
e: σ2 = 2, 4, 8, 16, 32, 64.
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The standard deviation σ is our s
ale parameter and must be properly set.Basi
ally, the s
ale �ts the average vessel thi
kness in the 
onsidered images. Thereare multis
ale algorithms whi
h 
ombine together the results obtained at di�erent s
ales[15℄. The results are usually a

urate, but at the 
ost of high 
omputation times. Inthis thesis, we set an �optimal� value for the parameter σ by properly maximizing someMOPs, that are able to quantitatively measure the performan
es of the image pro
ess-ing algorithm.Before performing the operations des
ribed in the next subse
tion, the histogram ofthe grey levels of Ĩ(x, y;σ) is stret
hed between 0 and 255.4.1.3 Image binarization and 
leaning
Histogram based binarizationIn order to segment the vessels through image binarization, we must identify a properthreshold grey level Th. This threshold 
an be impli
itly 
hosen by �xing the fra
tion
nTh of image pixels whose intensity level will be set to 0, i.e., those pixels with greylevels between 0 and Th. So doing, the value of Th turns out to be image dependent andit is not in�uen
ed by possible s
alings on the image luminosity level. The value of nThwill be dire
tly derived through the optimization pro
edure des
ribed in Se
tion 4.3.Figure 4.7 shows an example of binary image at this pro
essing stage.Cleaning of spurious elementsOn
e the binary image is available, it 
an be desirable to delete spurious elements notbelonging to the vessel network. To this end, we adopted a simple algorithm, that, atbest of our knowledge, is original and is illustrated in Figure 4.8.We �x a virtual grid made up of squares of n×n pixels and, for ea
h square, we fo
uson the perimetri
 pixels. If su
h pixels are all bla
k, we assume that the 
orrespondingsquare 
ontains either only ba
kground pixels or spurious elements, not 
onne
ted withthe vessel stru
ture. In both 
ases, the whole square is set to bla
k, thus removing thepossible spurious elements.
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(a) (b)

(
) (d)

(e) (f)Figure 4.6: (a) Ĩ at di�erent s
ales: s
ale σ2 = 2, 4, 8, 16, 32, 64.
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Figure 4.7: Example of image that we get after the binarization of Ĩ(x, y;σ), before the
leaning task.This 
leaning algorithm 
an be iterated by 
hanging n or the virtual grid position,so as to a

urately 
lean the image, but at the 
ost of an in
reasing 
omputationale�ort. Figure 4.8 shows what happens if we 
hoose to iterate the algorithm only twi
e,with n = 10. In the �rst step, the grid 
ompletely 
overs the image (see a detail inFigure 4.8(a)) and some spurious elements or not 
onne
ted parts of vessels (see thegrey squares in Figure 4.8(a)) are removed, as shown in Figure 4.8(b). In the se
ondstep, the grid is shifted by 5 pixel both horizontally and verti
ally (grey grid in Fig-ure 4.8(
)) and other elements (see the grey squares in Figure 4.8(
)) are removed, asshown in Figure 4.8(d).As an alternative, thanks to the algorithm modularity, one may resort to other mor-phologi
al solutions (e.g., area opening) for the 
leaning blo
k in order to a
hieve adi�erent trade-o� between speed and a

ura
y requirements.Field Of View edge removalWe point out that the blo
k des
ribed so far provide not only the vessel tree but alsothe edge of the �eld of view (FOV), as shown in Figure 4.7(a). This edge is eviden
edby the vessel enhan
ement blo
k and to remove it we must introdu
e a proper set ofoperations. The histogram of the original image I(x, y) (see Figure 4.9(a)) exhibits an
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(a) (b)

(
) (d)Figure 4.8: An example of the 
leaning operation.
evident peak at very low gray levels. This peak is 
learly distin
t from the 
entral partof the histogram, representing the FOV pixels. By resorting to a simple and robustthresholding operation, it is possible to de�ne an M ×N mask made up of white pixels
orresponding to pixels of the FOV and bla
k pixels elsewhere. The logi
al multipli
a-tion of the binary image resulting from the vessel extra
tion algorithm with this maskprovides images similar to the one shown in Figure 4.9(b), where the edge of the FOV isnot 
ompletely removed. To a

urately delete this edge, we 
an perform a slight erosionof the white portion of the mask by using, as stru
turing element, a disk of 5-pixelsradius. This operation is not parti
ularly sensitive as only the peripheral portion of thevessel tree 
ould be partially involved.The image provided by the binarization, 
leaning, and FOV removal blo
ks is 
alled
Î(x, y;σ, nTh).
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(a) (b)Figure 4.9: (a) The normalized histogram of the green 
hannel of a typi
al fundusimage. Beside this, the negative of a typi
al binary image obtained by resorting to theproposed vessel extra
tion algorithm without doing any operation to remove the edgeof the FOV. (b) Negative of a typi
al binary image obtained by applying the blo
k toremove the edge of the FOV without the preliminary erosion of the white portion ofthe mask.4.2 Measures of performan
es for vessel dete
tionGenerally speaking, a MOP is nothing more than a quality measure that addresses howwell a system works. In this Se
tion, some MOPs are introdu
ed to evaluate from aquantitative point of view the results provided by the proposed algorithm.The MOPs de�ned in the following are based on two images: a referen
e binaryimage Ī - resulting from the manual segmentation of a fundus image I performed bypeople trained by an experien
ed ophthalmologist - and the binary image Î - resultingfrom the algorithm.We remark that, sin
e Î depends on the algorithm parameters σ and nTh, also ea
hMOP depends on σ and nTh. For the sake of simpli
ity, however, in the next subse
tionssu
h a dependen
e will be omitted.4.2.1 Maximum Average A

ura
y (MAA)The MAA evaluates the MOP of the vessel dete
tion algorithm in 
orresponden
e withthe NFOV pixels belonging to the FOV [73℄. This MOP expresses the number of pixels
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tion 57that have been 
orre
tly 
lassi�ed with respe
t to NFOV :
MAA = 1 −

∑

j,k∈FOV

∣

∣

∣
Ījk − Îjk

∣

∣

∣

NFOV
∈ [0, 1] (4.12)4.2.2 K valuePreliminarily, we de�ne the following quantities: ntp is the per
entage of true positivepixels (i.e., white pixels in Î that belong to the manually extra
ted vessels in Ī), nfp isthe per
entage of false positive pixels (i.e., white pixels in Î that do not belong to man-ually extra
ted vessels in Ī), nfn is the per
entage of false negative pixels (i.e., bla
kpixels in Î that belong to manually extra
ted vessels in Ī), and ntn is the per
entageof true negative pixels (i.e., bla
k pixels in Î that do not belong to manually extra
tedvessels in Ī). The over mentioned per
entages are taken with respe
t to the MxN pixelsof the image to be pro
essed.The K value is a measure of the agreement between two observers [74℄:

K =
OA − EA

1 − EA
∈ [−1, 1] (4.13)where OA = (ntp + ntn) is the observed agreement and EA = (ntp + nfp)(ntp + nfn) +

(nfn + ntn)(nfp + ntn) is the expe
ted agreement. The index OA expresses the per
ent-age of pixels of Ī that are 
orre
tly 
lassi�ed in Î , while the index EA expresses theprobability that the two observation 
oin
ide. Indeed, EA 
an be interpreted as thesum between the produ
t of the per
entages of white pixels in Î (ntp + nfp) and in Ī

(ntp + nfn) and the produ
t of the per
entages of bla
k pixels in Î (nfn + ntn) and in
Ī (nfp + ntn).4.2.3 Q valueThis MOP is de�ned a

ording to the universal image quality index de�ned in [75℄.Su
h an index is �universal� in the sense that the quality measurement approa
h doesnot depend on the images being tested, the viewing 
onditions or the individual ob-servers.We 
onsider two images, t and r, where t is the image whose quality must be evalu-ated (in our 
ase t = Î), whereas r is the referen
e image (in our 
ase r = Ī). To de�nethe index Q, we preliminarily introdu
e a square window w(j, k) of nw × nw imagepixels. Su
h a window slides over the images r and t, starting from the top-left 
ornerand moving pixel by pixel horizontally and verti
ally through all the rows and 
olumns
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h image until the bottom-right 
orner is rea
hed. The index Q ∈ [−1, 1] is de�nedas follows:
Q(t, r) =

1

|W |
∑

w(j,k)∈W

4σtr(j, k)t̄(j, k)r̄(j, k)
(

σ2
t (j, k) + σ2

r (j, k)
)

(t̄2(j, k) + r̄2(j, k))
(4.14)where |W | is the overall number of possible di�erent positions of the window w overea
h image, whereas t̄(j, k) and r̄(j, k), σ2

t (j, k) and σ2
r (j, k), and σtr(j, k) are the meanvalues, the varian
es, and the 
ovarian
e, respe
tively, of the images t and r on ea
hwindow position. The expli
it expressions used to 
al
ulate the mean values, the vari-an
es and the 
ovarian
es of the images t and r at ea
h window position are provided inAppendix B. For the Q value, we set nw = 8 to have a window large enough to obtainreliable estimates of the mean, varian
e and 
ovarian
e of this MOP .4.3 OptimizationThe binary images obtained by resorting to the supervised algorithm proposed in this
hapter depend on the algorithm parameters σ and nTh. For this reason, it is ne
essaryto de�ne a pro
edure to 
hoose proper values for these parameters in order to ensure agood quality of the results. To do that, a training set made up of NTS fundus images(together with their referen
e segmentations) 
an be used and σ and nTh 
an be �xedby maximizing the quality of the results obtained by pro
essing the images belongingto it. In this sense the proposed algorithm turns out to be supervised.From a pra
ti
al point of view, one 
an 
hoose one of the MOPs introdu
ed in theprevious se
tion and then either maximize the following target fun
tion

F (σ, nTh) =
1

NTS

NTS
∑

k=1

MOPk(σ, nTh) (4.15)or minimize −F (σ, nTh).We have used the simplex sear
h method of [76℄. It is generally referred to asun
ostrained non linear optimization. This is a dire
t sear
h method, based on the 
on-vergen
e properties of the Nelder-Mead simplex method, that does not use numeri
alor analyti
 gradients.Su
h an algorithm is been implemented in the fun
tion FMINSEARCH, 
ontainedin Matlabr. Starting from a initial point P0 = (σ0, nTh0) and using this algorithm, we
an �nd only lo
al minimizers (or maximizers), but this is not a problem sin
e working
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e of the parameters
(σ, nTh) ∈ [1, 8] × [0.85, 0.95] (4.16)the MOPs behave regularly; they are 
onvex fun
tions as shown in Figure 4.10 for MAA.
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Figure 4.10: MAA 
onvex behaviour.This is true also for the other two MOPs, K and Q.4.4 Simulation resultsTo derive the image pro
essing results presented in this Se
tion as ben
hmarks for theproposed algorithm, the 40 fundus images making up the DRIVE database have beenused. In parti
ular, our training set 
ontains the last 20 images (NTS = 20) of thedatabase, whereas the �rst 20 images are a test set used to measure the performan
esof the algorithm whose parameters have been tuned a

ording to the optimization pro-
edure.
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leaning operation has been iterated for many values of n. For ea
h value of
n, the 
orresponding grid has been shifted on the image by positioning its upper-leftvertex in all the pixels (j, k) for j = 1, . . . , n − 1 and k = 1, . . . , n − 1. The sequen
eof values assigned to n is {3, 4, 8, 16, 4, 8, 16} and has been 
hosen heuristi
ally aftermany trials. We need to repeat twi
e some values of n in the sequen
e, sin
e a singleappli
ation would 
lean only one element in pairs of 
lose spurious patterns.4.4.1 Training phaseDuring the training phase, for ea
h MOP de�ned in the previous se
tion, the opti-mal values of the algorithm parameters σ and nTh have been obtained by maximizing
F (σ, nTh). These values are given in the �rst and se
ond 
olumns of Table I, respe
-tively. The MOPs values 
orresponding to the best and worst 
ases are shown in thethird and fourth 
olumns, respe
tively. These values were obtained by pro
essing theimages of the training set with the optimal values of the algorithm parameters. Fig-ure 4.11 shows the 
orresponding image-pro
essing results, i.e., the best (�rst row) andworst (se
ond row) vessel extra
tion results for the training set images in terms of MAA(a,d), K (b,e), and Q (
,f). The number of original images in the database is also given.Table ITable 4.1: Values of σ, nTh, best and worst 
ases after optimization, for ea
h MOPMOP σ nTh Best 
ase Worst 
ase

MAA 2.0253 0.90946 0.9541 0.9067
K 2.1505 0.89261 0.7610 0.5958
Q 2.0882 0.88603 0.7295 0.5406On
e the optimal values of σ and nTh have been obtained, the algorithm 
an beapplied to other images to test its performan
es.4.4.2 Test phaseThe �rst two 
olumns of Table II 
ontain the mean values and the standard deviations,respe
tively, of the MOPs obtained by pro
essing the images of the test set after �x-ing the parameters σ and nTh at their optimal values (see Table I). The values of the
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(a):40 (b):40 (
):38

(d):34 (e):23 (f):23Figure 4.11: Best (�rst row) and worst (se
ond row) vessel extra
tion results for thetraining set images with respe
t to MAA (a,d), K (b,e), and Q (
,f). The databasenumbers of the original images are shown next to the labels.MOPs 
orresponding to the best (third 
olumn) and worst (fourth 
olumn) 
ases arealso shown. The �fth and sixth 
olumns 
ontain the mean values of the True PositiveFra
tion (for ea
h image, the per
entage of vessel pixels a
tually 
lassi�ed as vesselpixels) or TPF and of the False Positive Fra
tion (for ea
h image, the per
entage ofnon-vessel pixels a
tually 
lassi�ed as vessel pixels) or FPF, respe
tively, for the 20images of the test set. In Figure 4.12, the segmented images 
orresponding to thebest (�rst row) and worst (se
ond row) 
ases are provided for the test set in terms ofMAA (a,d), K (b,e), and Q (
,f). The number of original images in the database is given.
4.4.3 Comparison with other methodsBy resorting to the �rst two MOPs (MAA and K), it is possible to 
ompare the per-



62 4. A supervised vessel segmentation algorithmTable IITable 4.2: Mean values, standard deviations, best and worst 
ases, mean TPF and FPFfor the MOPs with σ and nTh set to their optimal values.MOP Mean Standard Best 
ase Worst 
ase Mean Meandeviation TPF FPF
MAA 0.94183 0.00822 0.9587 0.9275 0.6377 0.0091

K 0.72860 0.03452 0.8069 0.6642 0.7052 0.0162
Q 0.69123 0.03933 0.7735 0.6247 0.7246 0.0193

(a):19 (b):19 (
):19

(d):3 (e):15 (f):15Figure 4.12: Best (�rst row) and worst (se
ond row) vessel extra
tion results for thetest set images with respe
t to MAA (a,d), K (b,e), and Q (
,f). The database numbersof the original images are shown next to the labels.forman
es of the proposed algorithm with the ones of other algorithms that 
an befound in the literature. The �rst two 
olumns of Table III 
ontain the mean values ofboth MAA and K, obtained by a se
ond independent manual segmentation available



4.4 Simulation results 63for the �rst 20 images of the DRIVE database (�rst row) and by pro
essing the test setimages by resorting to di�erent methods [73, 14℄: primitive-based method [14℄, pixel
lassi�
ation method [73℄, mathemati
al morphology and 
urve estimation method [77℄,veri�
ation-based lo
al thresholding method [78℄, s
ale-spa
e analysis and region grow-ing approa
h [79℄, mat
hed �lter method [20℄. Among these algorithms, only the pixel
lassi�
ation and primitive-based methods are supervised.Table IIITable 4.3: Comparisons with other methods proposed in the literatureMethod MAA K TPF FPFSe
ond manual segmentation 0.9473 0.7589 0.776 0.0275Primitive-based method 0.9441 0.7345 0.697 0.019Our algorithm 0.9419 0.7286 0.7246 0.019Pixel 
lassi�
ation 0.9416 0.7145Mathemati
al morphology 0.9377 0.6971Lo
al thresholding 0.9212 0.6399S
ale-spa
e and region growing 0.9181 0.6389 0.7246 0.0345Mat
hed �lter 0.8773 0.3357All ba
kground 0.8727 0The last two 
olumns of Table III 
ontain the mean values of TPF and FPF, re-spe
tively, for some of the 
onsidered methods. In parti
ular, for our method, we havereported the mean TPF and FPF for the MOP Q, whi
h provides the best results (seeTable II).Comparisons of the results summarized in Tables II and III eviden
e that the per-forman
es of the proposed algorithm are 
lose to the ones of well-known algorithmsproposed in the literature. On the whole, the results 
on�rm that supervised methodsrepresent a reliable way to get the best results. We remark that in this 
ase the al-gorithm is mu
h less 
omputationally expensive than the best algorithm in Table III.Using a Matlabr implementation and not a faster C++ one, running on a IntelrCeleronr CPU 2.40GHz with 192Mb RAM, the initial optimization phase of our algo-rithm 
an take several minutes, but after this, on
e the �optimal� values for parameters
σ and nTh are �xed, ea
h segmentation of a fundus image does not require more thansix se
onds, for images of size 564x584 pixels. The Primitive-based method algorithm,instead, requires a pro
essing time of several minutes, in similar 
onditions [14℄. Weremark that the modular stru
ture of the proposed algorithm may allow one a further
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omputations if 
ombined with a pipeline ar
hite
ture, i.e., if the sub-blo
ks 
an pro
ess in parallel di�erent images.4.4.4 MOPs in�uen
e on the resultsBy using the Q value as measure of performan
e, we show how di�erent features ofthe results 
an be highlighted. In parti
ular, with this MOP we 
an dete
t a highernumber of small vessels, related to higher values of the mean TPF for this MOP (seeTable II). The pri
e to pay is a larger number of wrongly 
lassi�ed pixels, related tohigher values of the mean FPF (see Table II). Anyway, we remark that these new falsepositives are 
on�ned to regions 
lose to image elements denoting the presen
e of somepathologies (e.g., drusen, exudates, age-related ma
ular degeneration) and then theya�e
t the results only for images 
ontaining this kind of elements.For istan
e Figure 4.13 shows:1. vessel segmentation of an image with no pathologies, for σ and nTh obtained bytraining with (a) MAA and (b) Q;2. vessel segmentation of an image with signs of mild early diabeti
 retinopathy, for
σ and nTh from the training with MAA (
) and with Q (d).The number of original images in the database is given.4.5 RemarksA supervised algorithm for vessel segmentation in red-free images of the human retinahas been proposed. Two parameters have been identi�ed whose 
hoi
e seems to beparti
ularly 
riti
al. The �optimal� values for these parameters are obtained by opti-mizing proper target fun
tions, de�ned on the basis of some MOPs. We referred tothree examples of MOPs, but di�erent 
hoi
es 
an �t di�erent spe
i�
 requirements.We point out that nowadays there is not, in the literature, a 
ommon opinion abouta universal MOP able to evaluate adequately the results of most of the algorithms.Moreover, di�erent appli
ations may need a di�erent attention on spe
i�
 aspe
ts ofthe result: as an example, one may be interested in having a higher a

ura
y on smallvessels or in determining the vessels' widths or in �nding at best the rami�
ations ofthe vessels' tree. Several appli
ations do not need either all the 
ited features nor that
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(a):1 (b):1

(
):8 (d):8Figure 4.13: (a) Vessel segmentation of an image with no pathologies, for σ and nThobtained from the training with MAA. (b) Result for σ and nTh from the training withQ. (
) Vessel segmentation of an image with signs of mild early diabeti
 retinopathy,for σ and nTh from the training with MAA. (d) Result from the same image but for
σ and nTh from the training with Q. The database numbers of the original images areshown next to the labels.these features are dete
ted all at the same time. The proposed algorithm is enough�exible to be 
ustomized for di�erent appli
ations, simply by 
hanging the referen
eMOP.We have experimentally veri�ed that 
hoosing the threshold Th impli
itly, by �xingthe fra
tion nTh of image pixels whose intensity level is set to 0, provides better results
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hoosing Th dire
tly. For instan
e, in the latter 
ase, we obtain a mean valueof 0.94015 and a standard deviation of 0.00898 for MAA, whi
h is a worst result if
ompared with the �rst row in Table II.With respe
t to other Hessian-based methods (e.g., [15℄), where two or more thresh-olds are required, our 
hoi
e of de�ning the algorithm only for red-free images (settingto zero the eigenvalue Λ(x, y) with maximum absolute value in 
orresponden
e of nega-tive 
urvature regions) allowed us to obtain satisfa
tory results with only one threshold.Indeed, in this 
ase the only high-
urvature stru
tures are the vessels. We point outthat the same algorithm 
an work with the negative of �uores
ein images.The 
hoi
e of a single �optimal� s
ale fa
tor σ, instead of a multi-s
ale approa
h,yields similar results, and redu
es 
onsiderably the 
omputational e�ort. As a matterof fa
t, by using the 20 images of the test set, with a multi-s
ale algorithm we obtainedthe best average MAA = 0.9423, with s
ales within the interval of 1 ≤ s ≤ 10 pixelsin steps of 1 pixel and with optimization only on nTh. With our algorithm, the bestaverage MAA was 0.94183 (see Table II). A further visual inspe
tion of the resultsreveals that there are not appre
iable di�eren
es in the dete
tion of small vessels. Onlyslight di�eren
es in the width of vessels 
an be appre
iated.We have already remarked that the 
leaning pro
edure deletes all the spurious el-ements. It may happen that some of these spurious elements belong to thin vessels,whi
h remain therefore un
onne
ted to the main tree. Spe
i�
 measures allowed us tostate that this is a marginal behavior. As 
ompared with the 
omplete algorithm, aversion not 
ontaining the 
leaning pro
edure 
auses an in
rease of 30% in the FPF andof only 4% in the TPF. This 
on�rms that most of un
onne
ted spurious little 
lustersdo not belong to the vessel tree. These measures are average values for the 20 imagesof the test set and have been obtained by σ and nTh �xed after the training with MAA(see Table I).Finally, we remark that the quality of the results may be further improved by addingother pro
essing blo
ks. For instan
e, a pro
edure for removing pixels belonging to theedge of the opti
 disk 
ould be introdu
ed. Another improvement for images showingsome pathology (e.g., drusen, exudates, and others) may be obtained by a blo
k forthe elimination of light obje
ts before segmenting the vessels in pathologi
al images.As a matter of fa
t, Figure 4.13 points out that light obje
ts in pathologi
al imagesusually have a bad in�uen
e on results, mainly when the obje
ts are near or tou
h thevas
ular network. The presen
e of a blo
k that eliminates these obje
ts before vesselsegmentation should over
ome this drawba
k, thus having a positive in�uen
e on the
al
ulation of σ and nTh.



Chapter 5
Improving vessel segmentationusing non-linear s
ale spa
e
In this 
hapter we introdu
e a modi�ed version of the algorithm des
ribed in the pre-vious 
hapter. Our aim is to improve the segmentation results. Furthermore, we use itfor the segmentation of noisy fundus retina images. Denoising (or image restoration)is, with segmentation, one of the most basi
 image pro
essing problem. It 
onstitutesa signi�
ant preliminary step in several ma
hine vision tasks, su
h as obje
t dete
tionand re
ognition. It is also one of the mathemati
ally most intriguing problems in vision.A major 
on
ern in designing image denoising models is to preserve important imagefeatures while removing noise. An important image feature is given by edges: exa
tlyto fa
e this kind of problems, the Total Variation image restoration models were �rstintrodu
ed by Rudin, Osher and Fatemi in their pioneering work [80℄. The variationalform of this models was designed with the expli
it goal of preserving sharp dis
onti-nuities (edges) in images, while removing noise and other undesired �ne-s
ale details.The fun
tional is 
onvex and it is one of the simplest variational approa
hes having thismost desirable property.We aim to a
hieve the vessel enhan
ement task on the basis of the Total Variationregularization. In the previous 
hapter we used the linear multis
ale theory. Now, these
ond derivatives and then the 
urvatures of the ridges are estimated on the basis ofthe Total Variation non-linear s
ale-spa
e. After this step, we apply the same blo
ksintrodu
ed in Chapter 4, to a
hieve image binarization and 
leaning. The two param-eters of interest (s
ale and threshold) are �xed by properly maximizing only the MAAmeasure of performan
e. 67



68 5. Improving vessel segmentation using non-linear s
ale spa
e5.1 Total variation regularizationTVM (Total Variation Minimization using the variational model or Total Variation Mo-tion 
onsidering the di�erential form) was originally introdu
ed in image pro
essing byRudin, Osher and Fatemi in [80℄ and then it has been used in many image pro
essingappli
ations. TVM is one of the earliest and best known examples of edge preservingregularization. It was designed with the expli
it goal of preserving sharp dis
ontinuities(edges) in images while removing unwanted �ne s
ale details and among them the noise,if present in the image. Figure 5.1 shows an example of Total Variation non-linear s
alespa
e. In Figure 5.2 we 
an observe the edges of the image: they are preserved betterthan in the linear 
ase.The Total Variation fun
tional, asso
iated to energies, has appeared and has beenpreviously studied in many di�erent areas of pure and applied mathemati
s. For in-stan
e, the notion of Total Variation of a fun
tion appeared in the theory of minimalsurfa
es. In applied mathemati
s, Total Variation based models and analysis appearin more 
lassi
al appli
ations su
h as elasti
ity and �uid dynami
s. Due to [80℄, thisnotion be
ame 
entral also in image pro
essing.At �rst, we introdu
e the variational form:
E (I(x, y; τ)) =

∫

Ω
(I − I0)

2 + τ ‖∇I(x, y)‖ dxdy

=

∫

Ω
(I − I0)

2 + τ

√

(

∂I(x, y)

∂x

)2

+

(

∂I(x, y)

∂y

)2

dxdy (5.1)The regularization term, for smooth images, is equivalent to the L1 norm of the �rstderivatives. In other words, it 
orresponds to the integration on the domain Ω of thegradient norm. As the gradient evaluated in a given point is a measure of the variationof the fun
tion in su
h point, the integration over the entire domain must result in thetotal variation (hen
e the name).It should be noti
ed that TVM is non-linear, i.e., we 
an't de�ne an operator Ttthat, 
onvoluted with the fun
tion I0, returns the total variation result.We want now to underline the mathemati
al properties that make this multis
aleanalysis edge preserving. First of all, we dedu
e the 
orresponding divergen
e formfrom the variational de�nition. A

ording to Equation (3.13), we de�ne
Φ(s) = s → Φ(‖∇I‖) = ‖∇I‖ (5.2)
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(a) (b)

(
) (d)

(e) (f)Figure 5.1: Example of TV s
ale-spa
e: t = 5, 10, 50, 100, 150, 200.
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(a) (b)

(
) (d)

(e) (f)Figure 5.2: Edge of a fundus image along a TV s
ale-spa
e: t = 5, 10, 50, 100, 150, 200.
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Then, having in mind Equation (3.26), we evaluate:

g(‖∇I‖) =
1

2

Φ′

‖∇I‖ =
1

2

1

‖∇I‖

=
1

2

1
√

(

∂I(x,y)
∂x

)2
+
(

∂I(x,y)
∂y

)2
(5.3)and then we are able to express the divergen
e form:

∂I

∂t
=

1

2
∇
( ∇I

‖∇I‖

) (5.4)with I0 as initial 
ondition.Equation (5.4) represents an intermediate result. Now we derive the oriented 1DLapla
ians form. This is the 
on
luding form that allows us to understand the natureof the di�usion asso
iated with the Total Variation:1. For z = ∇⊥I
‖∇I‖ we have c1 = g = 1

2
1

‖∇I‖2. For v = ∇I
‖∇I‖ we have c2 = g + ‖∇I‖ g′ = 1

2
1

‖∇I‖ + 1
2 ‖∇I‖

(

− 1
‖∇I‖2

)

= 0Finally, we rea
h the result:
∂I

∂t
=

1

2

1

‖∇I‖Izz (5.5)This result tells us that the Total Variation Motion des
ribes a di�usion pro-
ess that follows only the dire
tion orthogonal to the gradient (c1 6= 0, c2 = 0).No di�usion involves the lo
al edges of the image, so no blurring of them 
an beobserved during the di�usion pro
ess. In digital images we 
an have, a
tually, littledi�usion in the dire
tion of the edges due to in
orre
t estimates of the edge dire
tion,but this e�e
t remains anyway limited thus preserving the main features of the di�usionpro
ess.
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ale spa
e5.2 The stair
asing problemThe image restoration model, based on the Total Variation, tends to yield pie
ewise
onstant images, i.e., �blo
ky� images. In other words the TVM method well preservesedges but exhibits the sometimes undesiderable stair
ase e�e
t, namely the transforma-tion of smooth regions (ramps) into pie
ewise 
onstant regions (stairs). This behaviour
an be 
learly seen in a 1D example, like in Figure 5.3, where the regularization of anoisy signal is shown.This feature is 
ertainly useful for many appli
ations, but it 
an be a serious draw-ba
k for many others. This is true for our 
ase, sin
e the stair
ase e�e
t redu
es theridgeness of the vessels.

Figure 5.3: Left: original 1D signals. Center: noisy 1D signals, SNR ≈ 5. Right: resultof TV restoration.This behaviour is mainly due to huge di�usion near 
riti
al points where the gradientmagnitude of the image is zero, i.e., ‖∇I‖ = 0. We 
an also noti
e that Equation (5.4)is not de�ned at these points, due to the presen
e of the term 1/ ‖∇I‖.To solve this problem it is 
ommon in the literature [81℄ to introdu
e a slightlyperturbed norm
‖∇ǫI‖ ≡

√

‖∇I‖2 + ǫ2

=

√

(

∂I(x, y)

∂x

)2

+

(

∂I(x, y)

∂y

)2

+ ǫ2 (5.6)with ǫ ∈ ℜ. At the end of this se
tion we will show the e�e
ts of this 
hoi
e on thebehaviour of the di�usion pro
ess.



5.2 The stair
asing problem 735.2.1 Variational and di�erential form using the perturbed normNow, we want to derive the divergen
e and the oriented 1D Lapla
ians form from thevariational de�nition of our problem (TVM with the pertubed norm). We start from thegeneral de�nition of a variational problem involving the perturbed norm, then we getthe two di�erential representations from this (divergen
e form and oriented 1D Lapla-
ians form). In a se
ond time we obtain the parti
ular results for the TVM 
ase. Atthe end we will be able to dire
tly understand how the introdu
tion of the perturbednorm a�e
ts the di�usion behaviour.First of all, it 
an be easily noti
ed that every fun
tion of the perturbed norm isimpli
ity a fun
tion of the gradient magnitude
f (‖∇ǫI‖) = f

(

√

‖∇I‖2 + ǫ2

)

= Φǫ (‖∇I‖) (5.7)This simple 
onsideration allows us to reuse the results of Chapters 3. For the sake of
onvenien
e, we introdu
e the following notations:
δ = ‖∇I‖

δǫ = ‖∇ǫI‖ =

√

‖∇I‖2 + ǫ2 (5.8)Then a

ording to what reported above we have
δǫ =

√

δ2 + ǫ2 (5.9)
lim
ǫ→0

δǫ = δ (5.10)Before going on, it is useful to introdu
e the following results:1.
Φ′

ǫ(δ) :=
∂Φǫ

∂δ
=

∂f (δǫ)

∂δǫ

∂δǫ

∂δ

= f ′ ∂

∂δ

(

√

δ2 + ǫ2
)

= f ′1

2

2δ√
δ2 + ǫ2

⇒ Φ′
ǫ (δ) = f ′ ‖∇I‖

‖∇ǫI‖ (5.11)
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e2.
Φ′′

ǫ (δ) =
∂

∂δ

(

f ′ δ

δǫ

)

=
∂f ′

∂δ

δ

δǫ
+ f ′ ∂

∂δ

(

δ

δǫ

)

=
∂f ′

∂δǫ

∂δǫ

∂δ

δ

δǫ

+ f ′ ∂

∂δ

(

δ√
δ2 + ǫ2

)

= f ′′ δ

δǫ

δ

δǫ
+ f ′

δǫ − δδ
δǫ

δ2
ǫ

= f ′′ δ
2

δ2
ǫ

+ f ′ δ
2
ǫ − δ2

δ3
ǫ

⇒ Φ′′
ǫ = f ′′ ‖∇I‖

‖∇ǫI‖ + f ′ ‖∇ǫI‖2 − ‖∇I‖2

‖∇ǫI‖3 (5.12)Now, we have all the elements to de�ne 
ompletely the mathemati
al framework fora general problem involving the perturbed norm. We de�ne the variational form of thisproblem as follows
∫

Ω
(I − I0)

2 + τf(‖∇ǫI‖) dxdy =

∫

Ω
(I − I0)

2 + τΦǫ(δ) dxdy (5.13)from this and having in mind Equation (3.26), we 
an des
ribe the di�erential problemasso
iated to this, using a PDE in the divergen
e form:
∂I

∂t
= ∇

(

Φ′
ǫ

‖∇I‖∇I

)

= ∇
(

f ′ ‖∇I‖
‖∇ǫI‖

1

‖∇I‖∇I

)

⇒ ∂I

∂t
= ∇

(

f ′

‖∇ǫI‖∇I

) (5.14)and then derive the oriented 1D Lapla
ians form. We have to 
onsider a PDE of the kind
∂I

∂t
= c1Izz + c2Ivv (5.15)
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for whi
h we 
al
ulate the values of the two di�usion 
oe�
ients that weigh, respe
-tively, the di�usion in the dire
tions orthogonal (z) and parallel (v) to the gradient:

c1 =
Φ′

ǫ

δ
=

f ′

‖∇ǫI‖ (5.16)
c2 = Φ′′

ǫ = f ′′ ‖∇I‖
‖∇ǫI‖2 + f ′ ‖∇ǫI‖2 − ‖∇I‖2

‖∇ǫI‖3 (5.17)
5.2.2 Variational and di�erential form for TVM 
aseFor the spe
i�
 TVM 
ase we have to 
onsider:

f (δǫ) = Φǫ(δ) =
√

δ2 + ǫ2 = δǫ

f ′ = 1

f ′′ = 0 (5.18)Using these results we 
al
ulate the exa
t expression of TVM in all the three represen-tations:VARIATIONAL FORM
∫

Ω
(I − I0)

2 + τ ‖∇ǫI‖ dxdy (5.19)DIVERGENCE FORM
∂I

∂t
= ∇

( ∇I

‖∇ǫI‖

) (5.20)1-D LAPLACIANS FORM
c1 =

1

‖∇ǫI‖
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c2 =

‖∇ǫI‖2 − ‖∇I‖2

‖∇ǫI‖3 (5.21)The result for the Lapla
ian form is interesting sin
e it shows that, introdu
ing a per-tubation in the norm ‖∇I‖, we have 
onsequently the presen
e of a 
omponent of thedi�usion also in the dire
tion parallel to the gradient (c2 6= 0). For ǫ → 0 we 
omeba
k to the TVM as des
ribed in Se
tion 5.1 (stair
ase problem). Then, for in
reasingvalues of ǫ, the amount of di�usion a
ross the edges in
reases gradually and we 
aneasily observe a larger amount of blur in the regularized image, up to the 
omplete lossof the edge preserving properties typi
al of a TVM s
heme.The 
hoi
e of a useful value of ǫ should represent a trade-o� between these twoopposite behaviours, but we will show that this seems not to be a 
riti
al 
hoi
e.5.3 The improved algorithmAt this point we want to test the behaviour of the TVM (and its edge preservingproperties) in a segmentation appli
ation. To do this, we work with a modi�ed versionof the algorithm introdu
ed in the previous 
hapter. It 
hanges sin
e now we usethe nonlinear s
ale-spa
e I(x, y, t) due to TVM, instead of a linear s
ale-spa
e. Thealgorithm 
an be summarized as follows:1. Contrast enhan
ement pre-pro
essing2. TVM di�usion using Equation (5.20); we obtain the non-linear s
ale-spa
e I(x, y, t)3. Evaluation of the se
ond derivatives and then the Hessian matrix and its eigenval-ues a
ross the s
ales; we obtain the fun
tion Ĩ(x, y, t), equivalent to the fun
tionintodu
ed by Equation (4.11)4. Histogram-based binarization5. Cleaning6. FOV removalWe remark that for the TVM the s
ale parameter is the time t required by thedi�usion pro
ess: the higher time, the higher the blurring we 
an observe into the ar-eas of the image bounded by edges. On
e obtained the image at a 
ertain s
ale t weevaluate the spatial derivatives by the 
onvolution of our image with the derivativesof a Gaussian with standard deviation σder = 0.5 and so the Hessian matrix and itseigenvalues. We 
hoose σder = 0.5 to have a robust estimation of the se
ond derivatives



5.4 Simulation results 77without perturbing too mu
h, with a further linear multis
ale analysis, the results fromTVM.The same blo
ks introdu
ed in Chapter 4, for image binarization, 
leaning and FOVremoval are then applied to obtain the segmentation of the vessel tree of the fundusretina images. The �optimal� s
ale and histogram based threshold are still 
hosen bymaximazing a MOP. In this 
hapter we only deal with MAA measure (for further detail,see Se
tion 4.4).5.4 Simulation resultsIn this se
tion we show the results obtained by using the modi�ed segmentation al-gorithm. We want only to o�er an overview on signi�
ant performan
es, to point outmanifest improvements we a
hieve with this new version of the algorithm. For the TVMwe have to take into a

ount also the value of the perturbation ǫ used to avoid or redu
ethe stair
ase e�e
t. We use the results presented in this se
tion also to investigate anddis
uss how they are in�uen
ed by this new parameter in the multis
ale analysis.We anti
ipate that this parameter seems to be not 
riti
al. This topi
 has not beenfa
ed in this thesis, but �optimal� values of ǫ 
ould be automati
ally 
al
ulated startingfrom geometri
al measures related to the mean value of the vessel edges in the imageto be regularized. Starting from the variational model of the Total Variation, it 
an beshown that the value of the perturbation of the norm dis
riminates between �low edges�and �high edges� [80℄. Low edges are assimilated to the noise and blurred like this. Forhigh edges we 
an observe minimum di�usion a
ross the edge, similar to the 
ase of theTotal Variation without perturbed gradient norm.We report the results we obtained by 
onsidering four di�erent values of the per-turbation ǫ. First of all, regardless the value of ǫ, we obtain 
lose �optimal� values for tand nTh, after the training phase as des
ribed in Se
tion 4.4. By maximazing the MAAmeasure of performan
e, we have:
ǫ = 10 → (t = 20.364; nTh = 0.9084 )

ǫ = 100 → (t = 21.406; nTh = 0.9096 )

ǫ = 150 → (t = 21.058; nTh = 0.9087 )

ǫ = 200 → (t = 20.524; nTh = 0.9025 )On
e we have obtained the optimal values of t and nTh, we apply the algorithm to
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ale spa
ethe �rst 20 images of the DRIVE database to test its perfoman
e.The �rst two 
olumns of Table IV 
ontain the mean values and the standard devia-tions of the MAA, obtained by pro
essing the images of the test set. The parameters tand nTh are �xed at their optimal values for ea
h 
ase, 
onsidering ǫ = 10, 100, 150, 200.The values of MAA 
orresponding to the best (third 
olumn) and worst (fourth 
olumn)
ases are also shown. The �fth and sixth 
olumns 
ontain the mean values of TPF andFPF, respe
tively, for the 20 images of the test set. In Figure 5.4, the segmented images
orresponding to the best (�rst row) and worst (se
ond row) 
ases are provided for thetest set, for ǫ = 150 (
orresponding to the best result) and for ǫ = 100 and ǫ = 200.The number of original images in the database is given.
Table IVTable 5.1: Mean values, standard deviations, best and worst 
ases, mean TPF and FPFfor ǫ = 10, 100, 150, 200 with t and nTh set to their optimal values for MAA.MAA Mean Standard Best 
ase Worst 
ase Mean Meandeviation TPF FPFwith ǫ = 10 0.94209 0.0074597 0.96104 0.92992 0.65478 0.010646with ǫ = 100 0.94327 0.0078334 0.96253 0.93009 0.65362 0.0095701with ǫ = 150 0.94329 0.0074413 0.96149 0.9324 0.64893 0.0091484with ǫ = 200 0.94320 0.0076326 0.96163 0.9306 0.64701 0.0094993

For the four 
onsidered values of ǫ, the results in Table IV suggest the presen
e of a(sub)optimal value ǫ = 150 whi
h gives us the best MAA = 0.94329. Compared withthe MAA = 0.94183, obtained with a linear s
ale spa
e, we have 
learly better results,even with a lower varian
e (0.00746 instead of 0.00822 in the previous 
ase).Moreover, for ǫ = 100 and ǫ = 200 the results seem to not vary too mu
h: on avisual inspe
tion the results are almost identi
al. The MAA 
orresponding to these twovalues are very 
lose to the one for ǫ = 150. We point out that the introdu
tion of theperturbation in the gradient norm is not useless: for ǫ = 10 we 
an observe a lowerMAA due to a higher in�uen
e of the stair
ase e�e
t, however still having better resultsthan the linear 
ase.
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(a):19 (b):19 (
):19

(d):3 (e):3 (f):3Figure 5.4: Best (�rst row) and worst (se
ond row) vessel extra
tion results for the testset in terms of MAA for ǫ = 100 (a,d), ǫ = 150 (b,e), ǫ = 200 (
,f). The databasenumbers of the original images are shown next to the labels.5.5 Simulation results with noisy imagesIn many real appli
ations, in the 
ourse of a
quiring, transmitting, or pro
essing, digitalimages are perturbed by noise. The noise is usually des
ribed by its probabilisti
 model,e.g., gaussian noise is 
hara
terized by two moments (mean and standard deviation ofa gaussian distribution of density of probability).Appli
ation-dependent, a degradation often yields a resulting signal/image observa-tion model, and the most 
ommonly used is the additive one:
IN (x, y) = I(x, y) + η(x, y) (5.22)where the observed image IN in
ludes the original signal I and the independent andidenti
ally distributed (i.i.d) noise pro
ess η.
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e
The Total Variation Motion is designed to work with noisy images. We have de
idedto test this multis
ale analysis using noisy fundus retina images of the DRIVE database,
orrupted by Additive White Gaussian Noise (AWGN). This is a gaussian noise withzero mean 
hara
terized by its standard deviation σnoise. It is modeled by an additives
heme like the one of Equation (5.22).In Figure 5.5 we 
an see two examples of noisy fundus retina images.

(a) (b) (
)Figure 5.5: (a) Original image. (b) Noisy image, σnoise = 5. (
) Noisy image, σnoise =
10. We 
onsider two 
ases: σnoise = 5 and σnoise = 10. We 
ompare the results weobtain with the TVM based algorithm with the results we would have by using thealgorithm based on a linear multis
ale analysis. In any 
ase, we refer to the mean MAAvalue for the 20 images of the test set. The optimal s
ales and thresholds are �xed af-ter a training phase on the last 20 images of the database, 
orrupted with AWGN noise.Tables V and VI show the results for the two 
onsidered standard deviations σnoise,for di�erent values of the perturbation ǫ of the gradient norm.
Also in this 
ase, among the values of ǫ 
hosen to study the behaviour of our algo-rithm, the value ǫ = 150 gives the best result. Besides, for ǫ = 100 and ǫ = 200, theMAA don't vary too mu
h. In Figures 5.6 and 5.7 the segmented images 
orrespondingto the best (�rst row) and worst (se
ond row) 
ases are provided for the test set, for
ǫ = 100, 150, 200 and 
onsidering, respe
tively, the two 
ases σnoise = 5 and σnoise = 10.The number of original images in the database is given.



5.5 Simulation results with noisy images 81Table VTable 5.2: Noisy image results for TVM s
ale-spa
e based segmentation (noise AWGNwith σnoise = 5): mean values, standard deviations, best and worst 
ases, mean TPFand FPF for the MAA with t and nTh set to their optimal values.MAA Mean Standard Best 
ase Worst 
ase Mean Meandeviation TPF FPFwith ǫ = 10 0.93818 0.007082 0.09539 0.92420 0.64813 0.0128with ǫ = 100 0.94098 0.007169 0.95535 0.92773 0.65730 0.0115with ǫ = 150 0.94147 0.006826 0.95646 0.92867 0.65939 0.0113with ǫ = 200 0.94112 0.006774 0.95518 0.92852 0.65247 0.0109Table VITable 5.3: Noisy image results for TVM s
ale-spa
e based segmentation (noise AWGNwith σnoise = 10): Mean values, standard deviations, best and worst 
ases, mean TPFand FPF for the MAA with t and nTh set to their optimal values.MAA Mean Standard Best 
ase Worst 
ase Mean Meandeviation TPF FPFwith ǫ = 10 0.93416 0.00695 0.94903 0.92063 0.6285 0.0139with ǫ = 100 0.93808 0.00731 0.95227 0.92486 0.6234 0.0115with ǫ = 150 0.93822 0.00737 0.95448 0.92282 0.6314 0.0104with ǫ = 200 0.93810 0.00767 0.95385 0.92209 0.6218 0.0102To better understand the quality of the results, we present the MAA we would haveby using the linear multis
ale based segmentation. In Table VII the measures of theMAA using a linear s
ale-spa
e are reported for the same values of the noise standarddeviation as in Tables V and VI.From the 
omparison of the results reported in Table VII with the ones of Tables Vand VI, we 
an noti
e that the new algorithm works well also with noisy images, stillproviding better results than the linear 
ase.
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(a):19 (b):19 (
):19

(d):3 (e):3 (f):3Figure 5.6: Best (�rst row) and worst (se
ond row) vessel extra
tion results for thetest set in terms of MAA for ǫ = 100 (a,d), ǫ = 150 (b,e), ǫ = 200 (
,f), 
onsidering
σnoise = 10. The database numbers of the original images are shown next to the labels.

Table VIITable 5.4: Noisy image results for linear s
ale-spa
e based segmentation (noise AWGNwith σnoise = 5 and σnoise = 10): Mean values, standard deviations, best and worst
ases, mean TPF and FPF for the MAA with t and nTh set to their optimal values.MAA Mean Standard Best 
ase Worst 
ase Mean Meandeviation TPF FPFwith σnoise = 5 0.93821 0.00786 0.95601 0.9252 0.6340 0.0118with σnoise = 10 0.93657 0.00778 0.95192 0.9218 0.5992 0.0107
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(a):19 (b):19 (
):19

(d):3 (e):3 (f):3Figure 5.7: Best (�rst row) and worst (se
ond row) vessel extra
tion results for thetest set in terms of MAA for ǫ = 100 (a,d), ǫ = 150 (b,e), ǫ = 200 (
,f), 
onsidering
σnoise = 10. The database numbers of the original images are shown next to the labels.



84 5. Improving vessel segmentation using non-linear s
ale spa
e



Chapter 6Con
lusionIn this thesis we introdu
ed a novel algorithm for the segmentation of the vessels infundus retina images. The algorithm has a modular stru
ture and is made up of twofundamental blo
ks. The �rst is devoted to vessel enhan
ement involving multis
ale the-ory and s
ale-spa
e. Two 
ases are 
onsidered: linear s
ale-spa
e and edge-preservingnon-linear s
ale-spa
e based on Total Variation Motion. The se
ond blo
k provides abinary image by resorting both to a thresholding pro
edure and 
leaning operations.The multis
ale analysis framework is dis
ussed in detail. At �rst we introdu
ed themultis
ale analysis referred to an operator Tt applied to an image I(x, y). This was the�rst des
ription of a multis
ale analysis presented in the literature. Alvarez et al in [47℄gave an axiomati
 des
ription of the multis
ale properties and proved the relationshipbetween operator-based multis
ale analysis and PDEs. We used the Eulero-Lagrangeequations to link the di�usion PDE in the divergen
e form with the variational method.Then we derived the oriented 1D Lapla
ians form and we proved this result.We used our framework to prove or to dedu
e with a 
oherent formulation severalproperties of the multis
ale analysis (i.e. isotropi
 regularization, di�usion next to theedges of the image, uniqueness of the solution). For Total Variation Motion, we gave anovel 
hara
terization of the e�e
ts related to the use of a perturbed norm. We provedthe mathemati
al framework that des
ribes the di�usion behaviour in proximity of theedges.To a
hieve the vessel enhan
ement, we lo
ated the ridges in the image by evaluatingthe eigenvalues of the Hessian matrix. The eigenvalues give us point to point infor-mations about the 
urvature along the prin
ipal dire
tion, i.e. the dire
tion on whi
hwe measure the maximum 
onvexity or 
on
avity. This allows us to save 
omputationtime with respe
t to other methods. As a matter of fa
t, for example, the mat
hed�lter approa
h or the morphologi
al te
hniques need kernels or stru
turing elements atdi�erent orientations, and repeat several times the same operations for ea
h dire
tion.85



86 6. Con
lusionThe optimal values of the �s
ale� and �threshold� parameters of the algorithm werefound out by maximizing proper measures of performan
e (MOPs). We introdu
edsome MOPs to test the quality of our results and we 
ompared them with other meth-ods presented in the literature. The nonlinear algorithm outperforms the linear al-gorithm, working with both un
orrupted and noisy retinal images. We showed thatfor un
orrupted images the performan
es of the proposed algorithms are 
lose to theones of well-known algorithm presented in the literature. At best of our knowledge, nomethods have been applied to noisy DRIVE database images until now, so no terms of
omparison are available.We dis
ussed the in�uen
e that the MOPs have on the results. A resear
h topi

ould be the development of further MOPs able to highlight di�erent segmentation ap-pli
ations (i.e., a

ura
y on small vessels, vessels' widths, rami�
ation of the vessels'tree).The algorithm is modular. The quality of the results may be improved by addingother pro
essing blo
ks. For istan
e, a pro
edure for removing pixels belonging to theedge of the opti
 disk 
ould be introdu
ed. Another improvement for image showingsome pathology (e.g., drusen, exundates, and others) may be obtained by a blo
k forthe elimination of light obje
ts before segmenting the vessels in pathologi
al images.The presen
e of a blo
k that eliminates these obje
ts before vessel segmentation shouldover
ome this drawba
k.The modi�ed algorithm based on the non-linear s
ale-spa
e involves a new param-eter: the perturbation of the gradient norm ǫ. We showed that this is not a 
riti
alparameter, unlike the s
ale and the threshold. Spe
i�
 studies, not fa
ed in this thesis,
an be developed to identify an analyti
al relationship beetween the geometri
al 
har-a
teristi
s of the image and an optimal value of this parameter. On
e an optimal valuefor this is identi�ed, the results are robust with respe
t to limited 
hanges of this value.Further studies 
an be developed to analyze in detail the quality of the results,respe
t to in
reasing standard deviations of the gaussian noise and with salt and peppernoise or poissonian noise. It 
an be measured the di�erent rate of the degradation ofthe results between the two 
ases, linear and non-linear.



Appendix AFrom divergen
e form to oriented1D Lapla
ians formWe have have said that a PDE in the divergen
e form
∂I

∂t
= ∇

(

Φ′
‖∇I‖∇I

)

:= ∇ (g (‖∇I‖)∇I) (A.1)
an be rewrittten using the oriented 1D Lapla
ians form
It = c1Izz + c2Ivv (A.2)provided that:1. c1 := g2. c2 := g + ‖∇I‖ g′3. z := ∇⊥I

‖∇I‖4. v := ∇I
‖∇I‖PROOFWe rename δ := ‖∇I‖ =

√

I2
x + I2

y . We have:
∂I

∂t
= ∇ (g (δ)∇I) =

= g (δ)∇2I + ∇g (δ)∇I =87



88 A. From divergen
e form to oriented 1D Lapla
ians form
= g∇2I + gxIx + gyIy (A.3)with

gx =
∂g (δ)

∂x
=

∂g

∂δ

∂δ

∂x
= g′

IxIxx + IyIyx
√

I2
x + I2

y

= g′
IxIxx + IyIyx

‖∇I‖

= g′
IxIxx + IyIyx

δ

gy =
∂g (δ)

∂y
=

∂g

∂δ

∂δ

∂y
= g′

IxIxy + IyIyy
√

I2
x + I2

y

= g′
IxIxy + IyIyy

‖∇I‖

= g′
IxIxy + IyIyy

δ
(A.4)By repla
ing (A.4) in (A.3), we obtain:

∂I

∂t
= g∇2I +

g′

δ
(Ix (IxIxx + IyIyx) + Iy (IxIxy + IyIyy))

= g (Ixx + Iyy) +
g′

δ

(

I2
xIxx + IxIyIxy + IxIyIyx + I2

yIyy

) (A.5)We assume that our images are regular enough, so that Ixy = Iyx.By multiplying and dividing the right hand side (r.h.s.) of equation (A.5) by thesame quantity δ, we obtain:
∂I

∂t
=

g

δ2
δ2 (Ixx + Iyy) +

g′δ

δ2

(

I2
xIxx + 2IxIyIxy + I2

y Iyy

)

=
g

δ2

(

I2
x + I2

y

)

(Ixx + Iyy) +
g′δ

δ2

(

I2
xIxx + 2IxIyIxy + I2

y Iyy

) (A.6)then, by adding and subtra
ting the same quantity to the �rst term of the r.h.s., we have:
∂I

∂t
=

g

δ2

(

I2
xIxx + I2

yIyy + I2
xIyy + I2

y Ixx + 2IxIyIxy − 2IxIyIxy

)

+
g′δ

δ2

(

I2
xIxx + 2IxIyIxy + I2

yIyy

)
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=

g

δ2

(

I2
xIyy − 2IxIyIxy + I2

y Ixx

)

+

+
g + g′δ

δ2

(

I2
xIxx − 2IxIyIxy + I2

y Iyy

) (A.7)It 
an be easily veri�ed that
(

I2
xIxx + 2IxIyIxy + I2

yIyy

)

=
[

Ix Iy

]

[

Ixx Ixy

Iyx Iyy

] [

Ix

Iy

]

=
(

∇IT
H
)

∇I (A.8)
(

I2
yIxx − 2IxIyIxy + I2

xIyy

)

=
[

−Iy Ix

]

[

Ixx Ixy

Iyx Iyy

] [

−Iy

Ix

]

=
(

∇⊥IT
H
)

∇⊥I (A.9)and
‖∇⊥I‖ = ‖∇I‖ (A.10)Finally, we obtain:

It =
g

δ2

[(

∇⊥IT
)

∇⊥I
]

+
g + δg′

δ2

[(

∇IT
)

∇⊥I
]

= g

[(∇⊥IT

‖∇I‖ H

) ∇⊥I

‖∇I‖

]

+
(

g + δg′
)

[( ∇IT

‖∇I‖H

) ∇I

‖∇I‖

] (A.11)This is the end of the proof, sin
e the two terms inside the square parentheses 
orre-spond to the de�nition of the se
ond dire
tional derivatives in the dire
tions orthogonaland parallel to, respe
tively, the image gradient.
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Appendix BExpli
it expressions used to
al
ulate the Q valueIn this Appendix we report the expli
it expressions used to 
al
ulate the mean values,the varian
es and the 
ovarian
es of the images t and r at ea
h window position:
t̄(j, k) =

1

n2
w

∑

p,q∈w(j,k)

t(p, q) (B.1)
σ2

t (j, k) =
1

n2
w − 1

∑

p,q∈w(j,k)

(t(p, q) − t̄(j, k))2 (B.2)
σ2

t (j, k) =
1

n2
w − 1

∑

p,q∈w(j,k)

(t(p, q) − t̄(j, k)) (r(p, q) − r̄(j, k)) (B.3)Equations Equation (B.1) and Equation (B.2) apply, mutatis mutandis, also to r.
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